Skip to main content
Log in

Inviscid Damping and Enhanced Dissipation of the Boundary Layer for 2D Navier–Stokes Linearized Around Couette Flow in a Channel

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the 2D Navier–Stokes equations linearized around the Couette flow \((y,0)^t\) in the periodic channel \({\mathbb {T}} \times [-1,1]\) with no-slip boundary conditions in the vanishing viscosity \(\nu \rightarrow 0\) limit. We split the vorticity evolution into the free evolution (without a boundary) and a boundary corrector that is exponentially localized to at most an \(O(\nu ^{1/3})\) boundary layer. If the initial vorticity perturbation is supported away from the boundary, we show inviscid damping of both the velocity and the vorticity associated to the boundary layer. For example, our \(L^2_t L^1_y\) estimate of the boundary layer vorticity is independent of \(\nu \), provided the initial data is \(H^1\). For \(L^2\) data, the loss is only logarithmic in \(\nu \). Note both such estimates are false for the vorticity in the interior. To the authors’ knowledge, this inviscid decay of the boundary layer vorticity seems to be a new observation not previously isolated in the literature. Both velocity and vorticity satisfy the expected \(O(\exp (-\delta \nu ^{1/3}\alpha ^{2/3}t))\) enhanced dissipation in addition to the inviscid damping. Similar, but slightly weaker, results are obtained also for \(H^1\) data that is against the boundary initially. For \(L^2\) data against the boundary, we at least obtain the boundary layer localization and enhanced dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bajer, K., Bassom, A.P., Gilbert, A.D.: Accelerated diffusion in the centre of a vortex. J. Fluid Mech. 437, 395–411 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  3. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow I: Below threshold, Mem. of the AMS (2015) (To appear)

  4. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow II: Above threshold, Mem. of the AMS (2015) (To appear)

  5. Bedrossian, J., Germain, P., Masmoudi, N.: Stability of the Couette flow at high Reynolds numbers in two dimensions and three dimensions. Bull. Am. Math. Soc. 56(3), 373–414 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. de l’lHES 122(1), 195–300 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bedrossian, J., Masmoudi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flow. Arch. Ration. Mech. Anal. 219(3), 1087–1159 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bedrossian, J., Vicol, V., Wang, F.: The Sobolev stability threshold for 2D shear flows near Couette. J. Nonlinear Sci. 28(6), 2051–2075 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Case, K.: Stability of inviscid plane couette flow. Phys. Fluids 3(2), 143–148 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chen, Q., Li, T., Wei, D., Zhang, Z.: Transition threshold for the 2-d couette flow in a finite channel. ArXiv preprint arXiv:1808.08736 (2018)

  11. Constantin, P., Kiselev, A., Ryzhik, L., Zlatos, A.: Diffusion and mixing in fluid flow. Ann. Math. (2) 168, 643–674 (2008)

    Article  MathSciNet  Google Scholar 

  12. Constantin, P., Lopes Filho, M.C., Nussenzveig Lopes, H.J., Vicol, V.: Vorticity measures and the inviscid limit. Arch. Ration. Mech. Anal. 234(2), 575–593 (2019)

    Article  MathSciNet  Google Scholar 

  13. Coti Zelati, M., Delgadino, M.G., Elgindi, T.: M: On the relation between enhanced dissipation timescales and mixing rates. Commun. Pure Appl. Math. 73(6), 1205–1244 (2018)

    Article  Google Scholar 

  14. Deng, Y., Masmoudi, N.: Long time instability of the couette flow in low gevrey spaces. ArXiv preprint arXiv:1803.01246 (2018)

  15. Dikii, L.: The stability of plane-parallel flows of an ideal fluid. Soviet physics doklady, pp. 1179 (1961)

  16. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  17. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Semigroup Forum, pp. 278–280. Springer, New York (2001)

    Google Scholar 

  18. Feng, Y., Iyer, G.: Dissipation enhancement by mixing. Nonlinearity 32(5), 1810 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gallay, T.: Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices. Arch. Ration. Mech. Anal. 230(3), 939–975 (2018)

    Article  MathSciNet  Google Scholar 

  20. Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2-dimensional Navier–Stokes flows. Duke Math. J. 167(13), 2531–2631 (2018)

    Article  MathSciNet  Google Scholar 

  21. Grenier, E., Guo, Y., Nguyen, T.T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)

    Article  MathSciNet  Google Scholar 

  22. Grenier, E., Guo, Y., Nguyen, T.T.: Spectral instability of general symmetric shear flows in a two-dimensional channel. Adv. Math. 292, 52–110 (2016)

    Article  MathSciNet  Google Scholar 

  23. Grenier, E., Nguyen, T: Green function for linearized Navier–Stokes around a boundary layer profile: away from critical layers. ArXiv preprint arXiv:1702.07924 (2017)

  24. Grenier, E., Nguyen, T. T: Sharp bounds on linear semigroup of Navier Stokes with boundary layer norms. ArXiv preprint arXiv:1703.00881 (2017)

  25. Ibrahim, S., Maekawa, Y., Masmoudi, N.: On pseudospectral bound for non-selfadjoint operators and its application to stability of kolmogorov flows. ArXiv preprint arXiv:1710.05132 (2017)

  26. Ionescu, A., Jia, H.: Inviscid damping near shear flows in a channel. ArXiv preprint arXiv:1808.04026 (2018)

  27. Jia, H.: Linear inviscid damping in gevrey spaces. ArXiv preprint arXiv:1904.01188 (2019)

  28. Kato, T.: Remarks on Zero Viscosity Limit for Non-stationary Navier–Stokes Flows with Boundary. Seminar on Nonlinear Partial Differential Equations, pp. 85–98. Springer, New York (1984)

    Google Scholar 

  29. Kelvin, L.: Stability of fluid motion-rectilinear motion of viscous fluid between two parallel plates. Philos. Mag. 24, 188 (1887)

    Article  Google Scholar 

  30. Kukavica, I., Vicol, V., Wang, F.: The inviscid limit for the Navier–Stokes equations with data analytic only near the boundary. ArXiv preprint arXiv:1904.04983 (2019)

  31. Li, T., Wei, D., Zhang, Z.: Pseudospectral and spectral bounds for the oseen vortices operator. ArXiv preprint arXiv:1701.06269 (2017)

  32. Lin, Z., Zeng, C.: Inviscid dynamic structures near Couette flow. Arch. Ration. Mech. Anal. 200, 1075–1097 (2011)

    Article  MathSciNet  Google Scholar 

  33. Lin, Z., Zeng, C.: Small BGK waves and nonlinear Landau damping. Commun. Math. Phys. 306(2), 291–331 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lopes Filho, M.C., Mazzucato, A.L., Nussenzveig Lopes, H.J., Taylor, M.: Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc. (N.S.) 39(4), 471–513 (2008)

    Article  MathSciNet  Google Scholar 

  35. Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7), 1045–1128 (2014)

    Article  MathSciNet  Google Scholar 

  36. Maekawa, Y., Mazzucato, A.: The inviscid limit and boundary layers for Navier–Stokes flows. In: Giga, Y., Novotny, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 781–828. Springer, New York (2018)

    Chapter  Google Scholar 

  37. Marcus, P.S., Press, W.H.: On green’s functions for small disturbances of plane couette flow. J. Fluid Mech. 79(3), 525–534 (1977)

    Article  ADS  Google Scholar 

  38. Masmoudi, N., Zhao, W.: Stability threshold of the 2D couette flow in sobolev spaces. ArXiv preprint arXiv:1908.11042 (2019)

  39. Mazzucato, A., Niu, D., Wang, X.: Boundary layer associated with a class of 3D nonlinear plane parallel channel flows. Indiana Univ. Math. J. 60(4), 1113–1136 (2011)

    Article  MathSciNet  Google Scholar 

  40. Mazzucato, A., Taylor, M.: Vanishing viscosity plane parallel channel flow and related singular perturbation problems. Anal. PDE 1(1), 35–93 (2008)

    Article  MathSciNet  Google Scholar 

  41. Mazzucato, A., Taylor, M.: Vanishing viscosity limits for a class of circular pipe flows. Commun. Partial Differ. Equ. 36(2), 328–361 (2010)

    Article  MathSciNet  Google Scholar 

  42. Miller, P.D.: Applied Asymptotic Analysis, vol. 75. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  43. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201 (2011)

    Article  MathSciNet  Google Scholar 

  44. Orr, W.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid. Proc. R. Irish Acad. Sec. A: Math. Phys. Sci. 27, 9–68 (1907)

    Google Scholar 

  45. Rhines, P.B., Young, W.R.: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145 (1983)

    Article  ADS  Google Scholar 

  46. Romanov, V.: Stability of plane-parallel couette flow. Funct. Anal. Appl. 7(2), 137–146 (1973)

    Article  MathSciNet  Google Scholar 

  47. Thiffeault, J.-L., Doering, C.R., Gibbon, J.D.: A bound on mixing efficiency for the advection–diffusion equation. J. Fluid Mech. 521, 105–114 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  48. Wasow, W.: On small disturbances of plane couette flow. J. Res. Nat. Bur. Stand 51, 195–202 (1953)

    Article  MathSciNet  Google Scholar 

  49. Wei, D.: Diffusion and mixing in fluid flow via the resolvent estimate. ArXiv preprint arXiv:1811.11904 (2018)

  50. Wei, D., Zhang, Z.: Transition threshold for the 3D Couette flow in Sobolev space. ArXiv preprint arXiv:1803.01359 (2018)

  51. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the kolmogorov flow. ArXiv preprint arXiv:1711.01822 (2017)

  52. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71(4), 617–687 (2018)

    Article  MathSciNet  Google Scholar 

  53. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. Ann. PDE 5(1), 3 (2019)

    Article  MathSciNet  Google Scholar 

  54. Yaglom, A.: Hydrodynamic Instability and Transition to Turbulence (U Frisch, ed.), vol. 100. Springer, New York (2012)

    Book  Google Scholar 

  55. Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical sobolev regularity. Arch. Ration. Mech. Anal. 221(3), 1449–1509 (2016)

    Article  MathSciNet  Google Scholar 

  56. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369(12), 8799–8855 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anna Mazzucato and Vlad Vicol for helpful discussions, especially regarding Corollary 1.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siming He.

Additional information

Communicated by A. Ionescu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.B. was supported by NSF CAREER Grant DMS-1552826 and NSF RNMS #1107444 (Ki-Net)

Appendices

Technical Lemmas

1.1 The free evolution

Let us briefly recall the properties of the initial value problem

$$\begin{aligned}&\partial _t \omega + y \partial _x \omega = \nu \Delta \omega , \end{aligned}$$
(A.1)
$$\begin{aligned}&\omega (0) = \omega _{in}, \end{aligned}$$
(A.2)
$$\begin{aligned}&u = \nabla ^{\perp }\Delta ^{-1}\omega . \end{aligned}$$
(A.3)

Via Fourier transform in both variables \((x,y) \mapsto (\alpha ,\eta )\) we derive (see [7] for a modern treatment),

$$\begin{aligned} {\widehat{\omega }}(t,\alpha ,\eta )&= {\widehat{\omega }}_{in}(\alpha ,\eta + \alpha t) \exp \left( -\nu \alpha ^2 t - \nu \int _0^t\left| \eta + \alpha (t-\tau ) \right| ^2 d\tau \right) . \end{aligned}$$
(A.4)

The following lemma quantifies the enhanced dissipation and inviscid damping.

Lemma A.1

There holds the pointwise-in-time enhanced dissipation estimate

$$\begin{aligned} \left| \left| {\widehat{\omega }}(t,\alpha ,\cdot ) \right| \right| _{L^2_y} \lesssim e^{-\alpha ^2 \nu t - \frac{1}{12} \nu \alpha ^2 t^3} \left| \left| {\widehat{\omega }}_{in}(\alpha ,\cdot ) \right| \right| _{L^2_y}, \end{aligned}$$
(A.5)

there holds the time-averaged inviscid damping and enhanced dissipation

$$\begin{aligned} \left| \left| e^{\nu \alpha ^2 t+ \frac{1}{12}\nu \alpha ^2 t^3} {\widehat{u}}(t,\alpha ,\cdot ) \right| \right| _{L^2_t L^2_y} \lesssim \frac{1}{\left| \alpha \right| ^{1/2}}\left| \left| {\widehat{\omega }}_{in}(\alpha ,\cdot ) \right| \right| _{L^2_y}, \end{aligned}$$
(A.6)

and, more generally, the following \(L^2_t H^{-s}_y\) estimate for \(s > 1/2\):

$$\begin{aligned} \left| \left| e^{\nu \alpha ^2 t+ \frac{1}{12}\nu \alpha ^{2} t^3} {\widehat{\omega }}(t,\alpha ,\cdot ) \right| \right| _{L^2_t H^{-s}_y} \lesssim \frac{1}{\left| \alpha \right| ^{1/2}} \left| \left| {\widehat{\omega }}_{in}(\alpha ,\cdot ) \right| \right| _{L^2}. \end{aligned}$$
(A.7)

Proof

Estimate (A.5) is immediate from the formula (A.4). Estimate (A.6) follows from (A.7). Finally, we observe by (A.4),

$$\begin{aligned} \int _0^\infty \int _{-\infty }^\infty e^{2\alpha ^2 \nu t + \frac{1}{6}\nu \alpha ^2 t^3} \left\langle \eta \right\rangle ^{-2s} \left| {\widehat{\omega }}(t,\alpha ,\eta ) \right| ^2 d\eta&\lesssim \int _0^\infty \int _{-\infty }^\infty \left\langle \eta \right\rangle ^{-2s} \left| {\widehat{\omega }}_{in}(\alpha ,\eta + \alpha t) \right| ^2 d\eta dt \\&\lesssim \int _{-\infty }^\infty \left( \int _0^\infty \left\langle \eta - \alpha t \right\rangle ^{-2s} dt\right) \left| {\widehat{\omega }}_{in}(\alpha ,\eta ) \right| ^2 d\eta \\&\lesssim \frac{1}{\left| \alpha \right| } \left| \left| \omega _{in} \right| \right| _{L^2}^2, \end{aligned}$$

which completes the proof of (A.7). \(\quad \square \)

1.2 Airy functions estimates

Recall the definition of the homogeneous solutions of the Orr–Sommerfeld problem in terms of Airy functions (2.13). Standard asymptotics for the Airy functions gives the following

Lemma A.2

The homogeneous solutions \(H_-(z)\) and \(H_+(z)\) satisfy the following for \(z=z_r+\delta i \subset \left\{ z \in {\mathbb {C}}: 0< z_i < K + \frac{1}{100}\left| z_r \right| \right\} \),

$$\begin{aligned} |H_-(z)|\lesssim _K&\frac{1}{\langle z\rangle ^{1/4}}e^{-\frac{{2}}{3}Re(e^{i\pi /4}z^{3/2})}, \quad z_r\ge 0; \end{aligned}$$
(A.8a)
$$\begin{aligned} |H_-(z)|\lesssim _K&\frac{1}{\langle z\rangle ^{1/4}}e^{\frac{{2}}{3}Re(e^{i\pi /4}z^{3/2})}, \quad z_r\le 0;\end{aligned}$$
(A.8b)
$$\begin{aligned} |H_+(z)|\lesssim _K&\frac{1}{\langle z\rangle ^{1/4}}e^{\frac{{2}}{3}Re(e^{i\pi /4}z^{3/2})},\quad z_r\ge 0;\end{aligned}$$
(A.8c)
$$\begin{aligned} |H_+(z)|\lesssim _K&\frac{1}{\langle z\rangle ^{1/4}}e^{-\frac{{2}}{3}Re(e^{i\pi /4}z^{3/2})}, \quad z_r\le 0. \end{aligned}$$
(A.8d)

If \(z\in \{z\in {\mathbb {C}}|z_i<0\}\), then the solutions \(H_-(z)\) and \(H_+(z)\) satisfy the following

$$\begin{aligned} |H_-(z)|\lesssim _K&\frac{1}{\langle z\rangle ^{1/4}}e^{-\frac{{2}}{3}Re(e^{i\pi /4}z^{3/2})}, \quad z_r\in {\mathbb {R}};\end{aligned}$$
(A.9a)
$$\begin{aligned} |H_+(z)|\lesssim _K&\frac{1}{\langle z\rangle ^{1/4}}e^{\frac{{2}}{3}Re(e^{i\pi /4}z^{3/2})}, \quad z_r\in {\mathbb {R}}. \end{aligned}$$
(A.9b)

Proof

Recall the definition of the \(H_\pm \) in (2.13). For \(\left| z \right| \lesssim 1\), (A.8) follows since \(\left| H_{\pm } \right| \lesssim 1\) on bounded sets. For \(\left| z \right| \) larger, we apply the asymptotic expansion for \(|z|\rightarrow \infty \), \(|\mathrm {ph} z|<\pi -\zeta \), for any \(\zeta >0\) (see e.g. [42]):

$$\begin{aligned} Ai(z)=\frac{1}{2z^{1/4}\sqrt{\pi }}e^{-2z^{3/2}/3}(1+O(|z|^{-3/2})). \end{aligned}$$

Note that for the second and fourth inequalities, one must be careful to treat the branch cut (1.31) correctly. For the estimates (A.9), the proof is the same. One only needs to be careful with the fact that now the phase is \(\mathrm {ph}(z)\in (-\pi ,0)\) since \(z_r<0\). \(\quad \square \)

In addition to the standard Airy functions, we also require the integrated version used by Romanov [46],

$$\begin{aligned} A_0(z)=\int _{ze^{i \pi /6}}^{i0+\infty } Ai(t)dt, \end{aligned}$$
(A.10)

where for definiteness we take the contour to be the straight line connecting \(ze^{i\pi /6}\) to 0 and then the ray connecting 0 to \(i0 + \infty \). The following property of \(A_0\) proved by Romanov [46] is crucial.

Lemma A.3

(Lemma 2 and following remark, [46]). The function \(A_0(z)\) has no zeros in the sector \(-\pi \le \mathrm {ph} (z)\le 2\pi /3\) and in the half-plane \(\{z| z_i \le \delta _0\}\) for some universal constant \(\delta _0>0\). Moreover, the following quantity a is strictly positive

$$\begin{aligned} a=a(\delta )=-\max _{ z_i\le \delta }Re \frac{A_0'(z)}{A_0(z)}>0, \quad \delta \in [0,\delta _0). \end{aligned}$$
(A.11)

We also have the following lower bound of \(A_0\), which also follows from [(3.4) [46]]; see also [48].

Lemma A.4

(Integrated Airy function asymptotics) . The integrated Airy function (A.10) has the following lower bounds for \(z=z_r+i z_i \subset \left\{ z \in {\mathbb {C}}: 0< z_i< K + \frac{1}{100}\left| z_r \right| \right\} \cup \left\{ z \in {\mathbb {C}}: z_i < 0 \right\} \),

$$\begin{aligned} |A_0(z)| > rsim _K&\frac{1}{\langle z\rangle ^{3/4}}e^{\frac{2}{3}Re(z^{3/2}e^{i\pi /4})},\quad z_r\le 0; \end{aligned}$$
(A.12a)
$$\begin{aligned} |A_0(z)| > rsim _K&\frac{1}{\langle z\rangle ^{3/4}}e^{-\frac{2}{3}Re(z^{3/2}e^{i\pi /4})},\quad z_r\ge 0. \end{aligned}$$
(A.12b)

1.3 Power-gain lemmas

The following lemma is used often in our paper. Similar estimates are used in e.g. [24] and the references therein, however, here we use a different range of complex parameters, so we include a sketch for the sake of completeness.

Lemma A.5

Case 1: Consider the spectral parameter c lying on the vertical line \(\Gamma _\alpha :=\{c=c_r-(\alpha \nu +\delta \epsilon )i, c_r\in {\mathbb {R}}\}\). From (2.13a), the Langer variables RZ have the explicit form

$$\begin{aligned} R=\frac{r-c_r}{\epsilon }+\delta i=:R_r+\delta i,\quad Z=\frac{z-c_r}{\epsilon }+\delta i=:Z_r+\delta i. \end{aligned}$$

For \(\delta \) small enough, the following estimates hold (recall also (1.31))

$$\begin{aligned} \int _0^{Z_r}&\frac{1}{\langle R\rangle ^{1/4}}e^{\frac{2}{3}Re((R_r+\delta i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{\frac{2}{3}Re ((Z_r+\delta i)^{3/2}e^{\pi i/4})},\quad Z_r\ge 0. \end{aligned}$$
(A.13a)
$$\begin{aligned} \int _{Z_r}^0&\frac{1}{\langle R\rangle ^{1/4}}e^{\frac{2}{3}Re((R_r+\delta i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{\frac{2}{3}Re ((Z_r+\delta i)^{3/2}e^{\pi i/4})},\quad Z_r\le 0, \end{aligned}$$
(A.13b)
$$\begin{aligned} \int _{Z_r}^\infty&\frac{1}{\langle R\rangle ^{1/4}}e^{-\frac{2}{3}Re((R_r+\delta i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{-\frac{2}{3}Re ((Z_r+\delta i)^{3/2}e^{\pi i/4})},\quad Z_r\ge 0, \end{aligned}$$
(A.13c)
$$\begin{aligned} \int _{-\infty }^{Z_r}&\frac{1}{\langle R\rangle ^{1/4}}e^{-\frac{2}{3}Re((R_r+\delta i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{-\frac{2}{3}Re ((Z_r+\delta i)^{3/2}e^{\pi i/4})},\quad Z_r\le 0. \end{aligned}$$
(A.13d)

Case 2: In the high mode case, i.e., \(\alpha ^2\nu \ge C_0\), we consider the spectral parameter c lying on the vertical line \(\Gamma _\alpha :=\{c=c_r-(1-\kappa )\alpha \nu i, c_r\in {\mathbb {R}}\}\). From (2.13a), the Langer variables RZ have the explicit form

$$\begin{aligned} R=\frac{r-c_r}{\epsilon }-\kappa \alpha ^{4/3}\nu ^{2/3} i,\quad Z=\frac{z-c_r}{\epsilon }-\kappa \alpha ^{4/3}\nu ^{2/3} i. \end{aligned}$$

The following estimates hold (recall also (1.31))

$$\begin{aligned} \int _0^{Z_r}&\frac{1}{\langle R\rangle ^{1/4}}e^{\frac{2}{3}Re((R_r-\kappa \alpha ^{4/3}\nu ^{2/3} i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{\frac{2}{3}Re ((Z_r-\kappa \alpha ^{4/3}\nu ^{2/3} i)^{3/2}e^{\pi i/4})},\quad Z_r\ge 0. \end{aligned}$$
(A.14a)
$$\begin{aligned} \int _{Z_r}^0&\frac{1}{\langle R\rangle ^{1/4}}e^{-\frac{2}{3}Re((R_r-\kappa \alpha ^{4/3}\nu ^{2/3} i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{-\frac{2}{3}Re ((Z_r-\kappa \alpha ^{4/3}\nu ^{2/3} i)^{3/2}e^{\pi i/4})},\quad Z_r\le 0,\end{aligned}$$
(A.14b)
$$\begin{aligned} \int _{Z_r}^\infty&\frac{1}{\langle R\rangle ^{1/4}}e^{-\frac{2}{3}Re((R_r-\kappa \alpha ^{4/3}\nu ^{2/3} i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{-\frac{2}{3}Re ((Z_r-\kappa \alpha ^{4/3}\nu ^{2/3} i)^{3/2}e^{\pi i/4})},\quad Z_r\ge 0,\end{aligned}$$
(A.14c)
$$\begin{aligned} \int _{-\infty }^{Z_r}&\frac{1}{\langle R\rangle ^{1/4}}e^{\frac{2}{3}Re((R_r-\kappa \alpha ^{4/3}\nu ^{2/3} i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{\frac{2}{3}Re ((Z_r-\kappa \alpha ^{4/3}\nu ^{2/3} i)^{3/2}e^{\pi i/4})},\quad Z_r\le 0. \end{aligned}$$
(A.14d)

Proof

Proof of (A.13):

The inequality is immediate for \(\left| Z_r \right| \le 4\), hence, consider next the case \(\left| Z_r \right| \ge 4\). In this case, the following holds on the integration interval:

$$\begin{aligned} e^{\frac{2}{3}Re((R_r+\delta i)^{3/2}e^{\pi i/4})}\le e^{\frac{2}{3}Re((Z_r+\delta i)^{1/2}(R_r+\delta i)e^{i\pi /4})},\quad Z_r\ge R_r\ge 2; \end{aligned}$$
(A.15)

this follows by e.g. differentiation. Next, we decompose the integral in (A.13a) into two parts:

$$\begin{aligned} \int _0^{Z_r}\frac{1}{\langle R\rangle ^{1/4}}e^{\frac{2}{3}Re((R_r+\delta i)^{3/2}e^{i\pi /4})}dR_r&=\left( \int _0^{Z_r-\sqrt{Z_r}}+\int _{Z_r-\sqrt{Z_r}}^{Z_r}\right) \frac{1}{\langle R\rangle ^{1/4}}e^{\frac{2}{3}Re((R_r+\delta i)^{3/2}e^{i\pi /4})}dR_r \nonumber \\&=:T_1+T_2. \end{aligned}$$
(A.16)

First consider \(T_2\). Combining (A.15) and the following relation on the integration interval,

$$\begin{aligned} \langle R\rangle \ge (1+|Z_r-\sqrt{Z_r}|^2+\delta ^2)^{1/2}\ge (1+\frac{1}{4}|Z|^2)^{1/2}\ge \frac{1}{2}\langle Z\rangle , \end{aligned}$$

together with \(\delta \le \frac{1}{100}\le \frac{1}{400}Z_r\), we have

$$\begin{aligned} T_2&\lesssim \int _{Z_r-\sqrt{Z_r}}^{Z_r}\frac{1}{\langle Z\rangle ^{1/4}}e^{\frac{2}{3}Re((Z_r+\delta i)^{1/2}(R_r+\delta i)e^{i\pi /4})}dR_r \lesssim \frac{1}{\langle Z\rangle ^{1/4}}\frac{1}{Re((Z_r+\delta i)^{1/2}e^{i\pi /4})}e^{\frac{2}{3}Re((Z_r+\delta i)^{3/2}e^{i\pi /4})}\nonumber \\&\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{\frac{2}{3}Re((Z_r+\delta i)^{3/2}e^{i\pi /4})}. \end{aligned}$$
(A.17)

This completes the treatment of the \(T_2\) term. The \(T_1\) term in (A.16), using (A.15) and the fact that \(\delta \le \frac{1}{100}\le \frac{1}{400} \left| Z_r \right| \) is easier and is hence omitted for the sake of brevity. Hence (A.13a) follows.

The remaining inequalities (A.13a)–(A.13d) hold by analogous arguments once the suitable analogue of (A.15) is similarly deduced via differentiation. We omit the details for the sake of brevity.

Proof of (A.14):

In this case, \(\Gamma _\alpha :=\{c=c_r-(1-\kappa )\alpha \nu i,\quad c_r\in {\mathbb {R}}\}\). We prove the following monotonicity inequalities adapted for use in high frequencies:

$$\begin{aligned} e^{\frac{2}{3}Re((Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{3/2}e^{i\pi /4})}&\le e^{\frac{2}{3}Re((W_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{3/2}e^{i\pi /4})},\quad W_r\ge Y_r\ge 0;\\ e^{\frac{2}{3}Re((Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{3/2}e^{i\pi /4})}&\le e^{\frac{2}{3}Re((W_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{1/2}(Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)e^{i\pi /4})},\quad W_r\ge Y_r\ge 0;\\ e^{-\frac{2}{3}Re((Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{3/2}e^{i\pi /4})}&\le e^{-\frac{2}{3}Re((W_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{3/2}e^{i\pi /4})},\quad W_r\le Y_r\le 0. \\ e^{-\frac{2}{3}Re((Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{3/2}e^{i\pi /4})}&\le e^{-\frac{2}{3}Re((W_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{1/2}(Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)e^{i\pi /4})},\quad W_r\le Y_r\le 0. \end{aligned}$$

Consider the case \(W_r\le Y_r\le 0\) i.e., the third and fourth inequalities. First,

$$\begin{aligned}&-\frac{d}{dw}Re((w-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{1/2}(Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)e^{i\pi /4})\\&\quad =-\frac{1}{2}Re((w-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{-1/2}(Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)e^{i\pi /4}). \end{aligned}$$

Since \(W_r\le Y_r\), \(\mathrm {ph}(W_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)\le \mathrm {ph}(Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)\), so that the derivative is negative and the fourth inequality follows. The third inequality follows by a similar argument. For the \(W_r\ge Y_r\ge 0\) case, we have

$$\begin{aligned}&\frac{d}{dw}Re((w-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{1/2}(Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)e^{i\pi /4})\\&\quad =\frac{1}{2}Re((w-\kappa \alpha ^{4/3}\nu ^{2/3}i)^{-1/2}(Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)e^{i\pi /4}). \end{aligned}$$

Since \(W_r\ge Y_r\ge 0\), we have \(0\le -\frac{1}{2}\mathrm {ph}(W_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)\le -\frac{1}{2}\mathrm {ph}(Y_r-\kappa \alpha ^{4/3}\nu ^{2/3}i)\) and hence the derivative is positive. This completes the proof of the second inequality; the first inequality follows similarly. Combining these inequalities with the argument used to prove (A.13) yields the inequalities (A.14). \(\quad \square \)

By a similar argument, one can prove the following lemma (used in Sect. 6).

Lemma A.6

Consider the spectral parameter c lying on the half-lines as in Sect. 6,

$$\begin{aligned} \Gamma ^+&=\{c| c_i+\alpha \nu +\delta \alpha ^{-1/3}\nu ^{1/3}=-\tan (\theta )(c_r-200)_+, \quad c_r\in [200,\infty )\};\\ \Gamma ^-&=\{c|c_i+\alpha \nu +\delta \alpha ^{-1/3}\nu ^{1/3}=-\tan (\theta )(-c_r-200)_+, \quad c_r\in (-\infty ,-200]\}. \end{aligned}$$

The Langer variables are

$$\begin{aligned} R=\frac{r-c_r}{\epsilon }-\frac{c_i+\alpha \nu }{\epsilon }i =R_r+iR_i,\quad Z=\frac{z-c_r}{\epsilon }-\frac{c_i+\alpha \nu }{\epsilon }i=Z_r+iZ_i. \end{aligned}$$

Then the following estimates are satisfied (recall also (1.31))

$$\begin{aligned} \int _{\frac{-1-c_r}{\epsilon }}^{Z_r}&\frac{1}{\langle R\rangle ^{1/4}}e^{\frac{2}{3}Re((R_r+ iR_i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{\frac{2}{3}Re ((Z_r+ iZ_i)^{3/2}e^{\pi i/4})},\quad Z_r\ge \max \left\{ 0,\frac{-1-c_r}{\epsilon }\right\} ; \end{aligned}$$
(A.18a)
$$\begin{aligned} \int _{Z_r}^{\frac{1-c_r}{\epsilon }}&\frac{1}{\langle R\rangle ^{1/4}}e^{\frac{2}{3}Re((R_r+iR_i )^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{\frac{2}{3}Re ((Z_r+ iZ_i)^{3/2}e^{\pi i/4})},\quad Z_r\le \min \left\{ 0,\frac{1-c_r}{\epsilon }\right\} ; \end{aligned}$$
(A.18b)
$$\begin{aligned} \int _{Z_r}^\infty&\frac{1}{\langle R\rangle ^{1/4}}e^{-\frac{2}{3}Re((R_r+iR_i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{-\frac{2}{3} Re((Z_r+iZ_i)^{3/2}e^{i\pi /4})},\quad Z_r\ge 0; \end{aligned}$$
(A.18c)
$$\begin{aligned} \int _{-\infty }^{Z_r}&\frac{1}{\langle R\rangle ^{1/4}}e^{-\frac{2}{3}Re((R_r+iR_i)^{3/2}e^{i\pi /4})}dR_r\lesssim \frac{1}{\langle Z\rangle ^{3/4}}e^{-\frac{2}{3}Re((Z_r+iZ_i)^{3/2}e^{i\pi /4})},\quad Z_r\le 0. \end{aligned}$$
(A.18d)

1.4 Detailed Green’s function

The following denotes the full expression of the boundary resolvent \({\mathcal {R}}_b\) directly as an integral operator on \({\widehat{\omega }}_{in}\); see 2.34:

$$\begin{aligned} \omega _b&=-\int _{\Gamma _\alpha }\frac{ 2\epsilon ^{-2}}{\pi D(\alpha ,c)}\left( \int _{-1}^1 e^{-\alpha w} H_+(W) dw\right) \nonumber \\&\quad \times \,\int _{-1}^1{\bigg [\int _{z}^1 e^{\alpha r}H_-(R)dr}\bigg ] H_+(Z)H_-(Y) {\widehat{\omega }}_{in}(\alpha ,z) dzdc\nonumber \\&\quad -\int _{\Gamma _\alpha }\frac{ 2\epsilon ^{-2}}{\pi D(\alpha ,c)}\left( \int _{-1}^1 e^{-\alpha w} H_+(W) dw\right) \nonumber \\&\quad \times \,\int _{-1}^1 {\bigg [\int _{-1}^z e^{\alpha r} H_+(R)dr\bigg ]} H_-(Z)H_-(Y) {\widehat{\omega }}_{in}(\alpha ,z)dzdc\nonumber \\&\quad -\int _{\Gamma _\alpha }\frac{ 2\epsilon ^{-2}}{\pi D(\alpha ,c)}\left( -\int _{-1}^1 e^{\alpha w} H_+(W) dw\right) \nonumber \\&\quad \times \,\int _{-1}^1 {\bigg [\int _{z}^1e^{-\alpha r}H_-(R)dr\bigg ]} H_+(Z)H_-(Y) {\widehat{\omega }}_{in}(\alpha ,z)dzdc\nonumber \\&\quad -\int _{\Gamma _\alpha }\frac{ 2\epsilon ^{-2}}{\pi D(\alpha ,c)}\left( -\int _{-1}^1 e^{\alpha w} H_+(W) dw\right) \nonumber \\&\quad \times \,\int _{-1}^1 {\bigg [\int _{-1}^ze^{-\alpha r}H_+(R)dr \bigg ]} H_-(Z)H_-(Y) {\widehat{\omega }}_{in}(\alpha ,z)dzdc\nonumber \\&\quad -\int _{\Gamma _\alpha }\frac{ 2\epsilon ^{-2}}{\pi D(\alpha ,c)}\left( -\int _{-1}^1 e^{-\alpha w}H_-(W) dw\right) \nonumber \\&\quad \times \,\int _{-1}^1{\bigg [\int _{z}^1 e^{\alpha r}H_-(R)dr}\bigg ] H_+(Z)H_+(Y){\widehat{\omega }}_{in}(\alpha ,z) dzdc\nonumber \\&\quad -\int _{\Gamma _\alpha }\frac{ 2\epsilon ^{-2}}{\pi D(\alpha ,c)}\left( -\int _{-1}^1 e^{-\alpha w}H_-(W) dw\right) \nonumber \\&\quad \times \,\int _{-1}^1 {\bigg [\int _{-1}^z e^{\alpha r} H_+(R)dr\bigg ]} H_-(Z)H_+(Y) {\widehat{\omega }}_{in}(\alpha ,z) dzdc\nonumber \\&\quad -\int _{\Gamma _\alpha }\frac{ 2\epsilon ^{-2}}{\pi D(\alpha ,c)}\left( \int _{-1}^1 e^{\alpha w}H_-(W) dw\right) \nonumber \\&\quad \times \,\int _{-1}^1 {\bigg [\int _{z}^1e^{-\alpha r}H_-(R)dr\bigg ]} H_+(Z)H_+(Y) {\widehat{\omega }}_{in}(\alpha ,z) dzdc\nonumber \\&\quad -\int _{\Gamma _\alpha }\frac{ 2\epsilon ^{-2}}{\pi D(\alpha ,c)}\left( \int _{-1}^1 e^{\alpha w}H_-(W) dw\right) \nonumber \\&\quad \times \,\int _{-1}^1 {\bigg [\int _{-1}^ze^{-\alpha r}H_+(R)dr \bigg ]} H_-(Z)H_+(Y) {\widehat{\omega }}_{in}(\alpha ,z) dzdc\nonumber \\&=:\sum _{j=1}^8\int _{-1}^{1}K_j(y,z) {\widehat{\omega }}_{in}(\alpha ,z)dz. \end{aligned}$$
(A.19)

Estimates on the Evans Function

1.1 Evans function estimates

The main goal of this section is to prove the following lemma, which in term implies Lemma 2.1.

Lemma B.1

There exists a universal \(\nu _0\) such that for \(\nu \in (0,\nu _0]\), the Evans function \(D(\alpha ,c)\) is non-zero except in the region

$$\begin{aligned} \left\{ z \in {\mathbb {C}}\big | \ z_i < -\alpha \nu - \delta \alpha ^{-1/3} \nu ^{1/3} \right\} , \end{aligned}$$
(B.1)

for \(\delta <\delta _0\) (a sufficiently small universal constant).

Moreover, the following bounds are satisfied.

  1. (i)

    For any \(c\in \{c\in {\mathbb {C}}|c=c_r-i\alpha \nu -i\delta \alpha ^{-1/3}\nu ^{1/3},\quad \forall c_r\in (-\infty ,\infty )\}\):

    $$\begin{aligned} |D(\alpha , c)| > rsim \bigg |\int _{-1}^1 e^{-\alpha w}H_-(W)dw\bigg |\bigg |\int _{-1}^1 e^{\alpha w}H_+(W)dw\bigg |. \end{aligned}$$
    (B.2)

    Moreover, there holds

    $$\begin{aligned} \left| \int _{-1}^1e^{\alpha w}H_+(W)dw\right| > rsim \frac{\epsilon e^\alpha }{\langle \alpha \epsilon \rangle }\left| A_0\left( \frac{-1+ c_r}{\epsilon }+\delta i\right) \right| , \end{aligned}$$
    (B.3)
    $$\begin{aligned} \left| \int _{-1}^1e^{-\alpha w}H_-(W)dw\right| > rsim \frac{\epsilon e^\alpha }{\langle \alpha \epsilon \rangle }\left| A_0\left( \frac{-1-c_r}{\epsilon }+i\delta \right) \right| . \end{aligned}$$
    (B.4)
  2. (ii)

    For \(\alpha ^2\nu \ge C_0\) and \(c\in \{c\in {\mathbb {C}}|c=c_r-i(1-\kappa )\alpha \nu ,\quad \forall c_r\in (-\infty ,\infty )\}\):

    $$\begin{aligned} |D(\alpha , c)| > rsim \bigg |\int _{-1}^1 e^{-\alpha w}H_-(W)dw\bigg |\bigg |\int _{-1}^1 e^{\alpha w}H_+(W)dw\bigg |. \end{aligned}$$
    (B.5)

    Moreover, there holds

    $$\begin{aligned} \left| \int _{-1}^1e^{\alpha w}H_+(W)dw\right| > rsim {\epsilon e^\alpha }\left| A_0\left( \frac{-1+ c_r}{\epsilon }+\delta i\right) \right| , \end{aligned}$$
    (B.6)
    $$\begin{aligned} \left| \int _{-1}^1e^{-\alpha w}H_-(W)dw\right| > rsim \epsilon e^\alpha \left| A_0\left( \frac{-1-c_r}{\epsilon }+i\delta \right) \right| . \end{aligned}$$
    (B.7)

Proof

Consider case (i) first. First, define the variables \(d,C_j^\star \)

$$\begin{aligned} d=&-ic+\alpha \nu , \end{aligned}$$
(B.8a)
$$\begin{aligned} C_1^\star&:=\frac{-1-id}{\epsilon }=\frac{-1-c_r}{\epsilon }+\delta i,\end{aligned}$$
(B.8b)
$$\begin{aligned} C_2^\star&:=\frac{-1-i{\overline{d}}}{\epsilon }=\frac{-1+c_r}{\epsilon }+\delta i. \end{aligned}$$
(B.8c)

By definition (2.13a) for the spectral parameter c on the vertical line \(c_i\equiv -\alpha \nu -\delta \epsilon \) we get

$$\begin{aligned} Z:=\frac{z-id}{\epsilon }=\frac{z-c_r}{\epsilon }+\delta i. \end{aligned}$$
(B.9)

Define also the function u(zt)

$$\begin{aligned} u(z,t)=\frac{A_0(z+t)}{A_0(z)}=\exp \bigg (\int _0^t \frac{A_0'(z+s)}{A_0(z+s)}ds\bigg ). \end{aligned}$$
(B.10)

Step 1: Rephrasing the lower bound (B.2). First, we show that the lower bound of the Evans function \(|D(\alpha ,c)|\) (B.2) is follows from the follwing:

$$\begin{aligned} e^{2\alpha }&\frac{1}{1+q}\left| 1-e^{-2\alpha }u\left( C_j^\star ,\frac{2}{\epsilon }\right) \right| \ge \frac{1}{1+q}\left| 1-e^{2\alpha }u\left( C_j^\star ,\frac{2}{\epsilon }\right) \right| \nonumber \\&+\alpha \epsilon \int _0^{2/\epsilon }(e^{2\alpha -\alpha \epsilon t}+e^{\alpha \epsilon t})\left| u\left( C_j^\star ,t\right) \right| dt+\frac{q}{1+q}(1+e^{2\alpha -2a/\epsilon }) \end{aligned}$$
(B.11)

for some fixed universal constant \(q>0\). To this end, we first note that the lower bound (B.2) is implied by the relations:

$$\begin{aligned} \frac{1}{1+q}\bigg |\int _{-1}^1 e^{-\alpha w}Ai\left( e^{i\pi /6}\frac{w-id}{\epsilon }\right) dw\bigg |\ge \bigg |\int _{-1}^1 e^{\alpha w}Ai\left( e^{i\pi /6}\frac{w-id}{\epsilon }\right) dw\bigg |;\end{aligned}$$
(B.12)
$$\begin{aligned} \frac{1}{1+q}\bigg |\int _{-1}^1 e^{\alpha w}Ai\left( e^{i5\pi /6}\frac{w-id}{\epsilon }\right) dw\bigg |\ge \bigg |\int _{-1}^1 e^{-\alpha w}Ai\left( e^{i5\pi /6}\frac{w-id}{\epsilon }\right) dw\bigg |. \end{aligned}$$
(B.13)

Secondly, by substitution (\(x=-1+\epsilon t\) in (B.12) and \(x=1-\epsilon t\) in (B.13)) and the fact that \(A_i(w)=\overline{Ai({\overline{w}})}\), (B.12) and (B.13) are equivalent to

$$\begin{aligned}&\frac{1}{1+q}e^{2\alpha }\bigg |\int _0^{2/\epsilon }e^{-\alpha \epsilon t} Ai\left( e^{i\pi /6}\left( \frac{-1-id}{\epsilon }+t\right) \right) dt\bigg |\nonumber \\&\quad \ge \bigg |\int _0^{2/\epsilon }e^{\alpha \epsilon t} Ai\left( e^{i\pi /6}\left( \frac{-1-id}{\epsilon }+t\right) \right) dt\bigg |\end{aligned}$$
(B.14)
$$\begin{aligned}&\frac{1}{1+q}e^{2\alpha }\bigg |\int _0^{2/\epsilon }e^{-\alpha \epsilon t} Ai\left( e^{i\pi /6}\left( \frac{-1-i{\overline{d}}}{\epsilon }+t\right) \right) dt\bigg |\nonumber \\&\quad \ge \bigg |\int _0^{2/\epsilon }e^{\alpha \epsilon t} Ai\left( e^{i\pi /6}\left( \frac{-1-i{\overline{d}}}{\epsilon }+t\right) \right) dt\bigg |, \end{aligned}$$
(B.15)

which in turn hold provided the following is satisfied:

$$\begin{aligned}&e^{2\alpha }\frac{1}{1+q}\bigg |\int _0^{2/\epsilon }e^{-\alpha \epsilon t} Ai\left( e^{i\pi /6}(C_j^\star +t)\right) dt\bigg |\nonumber \\&\quad \ge \bigg |\int _0^{2/\epsilon }e^{\alpha \epsilon t} Ai(e^{i\pi /6}(C_j^\star +t))dt\bigg |,\quad j=1,2, \end{aligned}$$
(B.16)

where the quantities \(C_j^\star \) (B.8a) take values in the domain

$$\begin{aligned} Re(C_j^\star )&\le \max \left\{ \frac{-1- c_r}{\epsilon },\frac{-1+ c_r}{\epsilon }\right\} ,\quad Im(C_j^\star )=\frac{- c_i-\alpha \nu }{\epsilon }= \delta ,\quad {\alpha \ge 0}. \end{aligned}$$
(B.17)

According to Lemma A.3, \(|A_0(C_j^\star )|\) is non-zero in this domain. Integrating both integrals in the inequality (B.16) by parts and then dividing by \(|A_0(C_j^\star )|\) yield that

$$\begin{aligned}&\frac{e^{2\alpha }}{1+q}\left| \int _0^{2/\epsilon }(\alpha \epsilon )e^{-\alpha \epsilon t} \frac{A_0(C_j^\star +t)}{A_0(C_j^\star )}dt+\frac{e^{-2\alpha }A_0(C_j^\star +\frac{2}{\epsilon })}{A_0(C_j^\star )}-1\right| \nonumber \\&\quad \ge \left| -\int _0^{2/\epsilon } \alpha \epsilon e^{\alpha \epsilon t} \frac{A_0(C_j^\star +t)}{A_0(C_j^\star )}dt+\frac{e^{2\alpha }A_0(C_j^\star +\frac{2}{\epsilon })}{A_0(C_j^\star )}-1\right| ,\quad j=1,2. \end{aligned}$$
(B.18)

Combining it with the definition of u (B.10), we obtain the result (B.11).

Step 2: Proof of the inequality (B.11). Recalling from [46], we obtain

$$\begin{aligned} |u(C_j^\star ,t)|=\bigg |\exp \bigg (\int _0^t Re\frac{A_0'(C_j^\star +s)}{A_0(C_j^\star +s)}ds\bigg )\bigg |\le e^{-at}, \quad \forall t\in \left[ 0,\frac{2}{\epsilon }\right] ,\quad j=1,2,\nonumber \\ \end{aligned}$$
(B.19)

where a is defined in (A.11). Next, we square both sides of (B.11) (note both sides are positive), use \(u(C_j^\star ,2\epsilon ^{-1})=-e^{-2a/\epsilon }\) and the upper bound (B.19), to obtain that the following implies (B.11),

$$\begin{aligned} e^{2\alpha }(1+e^{-2\alpha -2a/\epsilon })\ge & {} 1+e^{2\alpha -2a/\epsilon }+(1+q)\alpha \epsilon \int _0^{2/\epsilon }(e^{2\alpha -\alpha \epsilon t}+e^{\alpha \epsilon t})e^{-at}dt\nonumber \\&+ q(1+e^{2\alpha -2a/\epsilon }). \end{aligned}$$
(B.20)

Now substituting \(t=(1+s)/\epsilon \) and dividing both sides by \(\alpha e^{\alpha -a/\epsilon }\) yields the equivalent inequality

$$\begin{aligned} e^{a/\epsilon }\frac{a}{\epsilon }\int _0^1\frac{\sinh \alpha s}{\sinh \alpha }\sinh \frac{as}{\epsilon }ds\ge 1+\frac{q}{4(1+q)}\left( \frac{e^\alpha }{\sinh \alpha }+\frac{e^{2a/\epsilon }}{e^\alpha \sinh \alpha }\right) . \end{aligned}$$
(B.21)

The left hand side is calculated through integration by parts as

$$\begin{aligned} e^{a/\epsilon }\frac{a}{\epsilon }\int _0^1\frac{\sinh \alpha s}{\sinh \alpha }\sinh \frac{as}{\epsilon }ds= \frac{e^{2a/\epsilon }+1}{2}\left( \frac{1-\frac{\alpha \epsilon }{a} \frac{\tanh (a/\epsilon )}{\tanh (\alpha )}}{1-(\alpha \epsilon /a)^2}\right) =:F\left( \alpha ,\frac{a}{\epsilon }\right) . \end{aligned}$$
(B.22)

As a result, the following lower bound of the function F yields the inequality (B.11)

$$\begin{aligned} F\left( \alpha ,\frac{a}{\epsilon }\right) >1+\frac{q}{4(1+q)}\left( \frac{e^\alpha }{\sinh \alpha }+\frac{e^{2a/\epsilon }}{e^\alpha \sinh \alpha }\right) . \end{aligned}$$
(B.23)

The remaining part is devoted to proving this lower bound. Recall some properties of the function F from [46]. The function \(F(\alpha ,\beta )\) is decreasing in terms of \(\alpha \) and is increasing in terms of \(\beta \). Next we distinguish between two regimes: K sufficiently large such that \(Ka\ge 100\) where a is defined in (A.11), we define

$$\begin{aligned}&(1)\text { Low modes: } \alpha \epsilon \le Ka; \end{aligned}$$
(B.24)
$$\begin{aligned}&(2)\text { High modes: } \alpha \epsilon \ge Ka. \end{aligned}$$
(B.25)

In the low mode case (1), to derive the lower bound, we consider the minimum of the function \(F(\alpha ,\beta )\) in the domain (here \(B_K\) is a constant chosen sufficiently large relative to K)

$$\begin{aligned} D:=\{(\alpha ,\beta )|\beta \ge B_K, K\beta \ge \alpha , \alpha \ge 1\}. \end{aligned}$$

A figure of the region D can be found in Fig. 2. Due to monotonicity, the minimum of \(F(\alpha ,\beta )\) is achieved on the half-line \(\alpha =K\beta , \beta \ge B_K\). On this line segment, explicit calculation yields

$$\begin{aligned} \min _{(\alpha ,\beta )\in D}F(\alpha ,\beta )\ge & {} \min _{\beta \ge B_K}F(K\beta ,\beta )=\min _{\beta \ge B_K}\frac{e^{2\beta }+1}{2}\frac{1-K\frac{\tanh (\beta )}{\tanh (K\beta )}}{1-K^2}\nonumber \\\ge & {} \min _{\beta \ge B_K}{ \frac{e^{2\beta }}{2(K+1)}-\frac{1}{2(K-1)}}. \end{aligned}$$
(B.26)

Choosing q sufficiently small relative to \(K^{-1}\) and \(\nu \) sufficiently small relative to a and \(K^{-1}\), (B.26) yields (B.23).

Fig. 2
figure 2

Domain of interest

For the high mode case (2), we estimate the function F as follows:

$$\begin{aligned} F(\alpha ,a/\epsilon )&=\frac{e^{2a/\epsilon }+1}{2}\frac{\frac{\alpha \epsilon }{a}\frac{\tanh (a/\epsilon )}{\tanh (\alpha )}-1}{(\alpha \epsilon /a)^2-1}\ge \frac{e^{2a\alpha ^{1/3}\nu ^{-1/3}}+1}{2}\frac{K\frac{\tanh (a\alpha ^{1/3}\nu ^{-1/3})}{\tanh \alpha }-1}{\alpha ^{4/3}\nu ^{2/3}/a^2-1}\nonumber \\&\ge \frac{K/2}{\alpha ^{4/3}}\frac{e^{\alpha ^{1/3}}+1}{2}, \end{aligned}$$
(B.27)

which implies (B.23).

Step 3: Proof of inequalities (B.3) and (B.4). Recall (B.8a). By arguments similar to that used to prove (B.2), a suitable lower bound b as follows yields (B.3) and (B.4)

$$\begin{aligned} e^{\alpha }\epsilon \left| \int _0^{2/\epsilon } e^{-\alpha \epsilon t}H_-(C_j^\star +t)dt\right| \ge b>0. \end{aligned}$$
(B.28)

Recalling the definition of \(A_0\)(A.10) and u (B.10), then an integration by parts yields that the following implies (B.28):

$$\begin{aligned} e^{\alpha }\epsilon \left| u\bigg (C_j^\star ,\frac{2}{\epsilon }\bigg )e^{-2\alpha }-1\right| \ge \epsilon e^\alpha \left| \int _0^{2/\epsilon }e^{-\alpha \epsilon t}\alpha \epsilon \left| u(C_j^\star , t)\right| dt\right| +\frac{b}{|A_0(C_j^\star )|}. \end{aligned}$$
(B.29)

Using the upper bound (B.19) and \(u(C_j^\star ,2\epsilon ^{-1})=-e^{-2a/\epsilon }\), we see that (B.3) and (B.4) hold if the following is satisfied:

$$\begin{aligned} e^\alpha (1-e^{-2\alpha -2a/\epsilon })\ge e^\alpha \int _0^{2/\epsilon } e^{-\alpha \epsilon t}\alpha \epsilon e^{-at}dt+\frac{b}{|A_0(C_j^\star )|\epsilon }. \end{aligned}$$
(B.30)

A calculation shows that (B.30) holds if

$$\begin{aligned} \bigg (\frac{a}{\alpha \epsilon +a}\bigg )(e^{\alpha }-e^{-\alpha -2a/\epsilon })\ge \frac{b}{|A_0(C_j^\star )|\epsilon }. \end{aligned}$$
(B.31)

To prove the inequality (B.31), we distinguish between the high modes and low modes (B.24) again. If \(\alpha \) is small, i.e., \(\alpha \epsilon \le Ka\), the inequality (B.31) is satisfied if b is small

$$\begin{aligned} b\le \frac{e^\alpha |A_0(C_j^\star )|\epsilon }{(K+1)2}. \end{aligned}$$
(B.32)

For the high modes \(\alpha \epsilon \ge Ka\ge 100\), the inequality (B.31) holds if

$$\begin{aligned} b\le \frac{e^\alpha a|A_0(C_j^\star )|\epsilon }{2(\alpha \epsilon +a)}\approx \frac{e^\alpha |A_0(C_j^\star )|\epsilon }{\alpha \epsilon }. \end{aligned}$$

Combining the estimates in different regimes, we obtain that (B.3) and (B.4) hold as long as the lower bound b in (B.28) is smaller than

$$\begin{aligned} b\lesssim \frac{e^\alpha |A_0(C_j^\star )|\epsilon }{\langle \alpha \epsilon \rangle }. \end{aligned}$$

Combining it with the asymptotic expansion of \(A_0\) in Lemma A.4 yields the estimate (2.18). This completes the proof part (i) of the lemma.

Step 4: Part (ii)—Proof of the inequalities (B.5), (B.6) and (B.7) in the high mode case. Let us comment on the proof of (B.5), (B.6), and (B.7). Here we use the observation [(3.5), [46]]: for sufficiently large \(R>0\), and for all z in \(G_R:=\{z||z|\ge R,-13\pi /12\le \mathrm {ph} z\le \pi /12\}\), the following inequality holds for some universal constant \(B > 0\),

$$\begin{aligned} Re\frac{A_0'(z)}{A_0(z)}\le -R^{1/2}\cos \frac{7\pi }{24}+\frac{B}{R}. \end{aligned}$$
(B.33)

Following the estimate (B.33), we have that the Langer variables in this case satisfy

$$\begin{aligned} C_j^\star =\frac{-1\pm c_r}{\epsilon }-\kappa \frac{\alpha \nu }{\epsilon }i,\quad |C_j^\star | > rsim \alpha ^{4/3}\nu ^{2/3}. \end{aligned}$$

Now from (B.33) and the definition of a in (A.11) gives \(a > rsim \kappa ^{1/2}\alpha ^{2/3}\nu ^{1/3}=\kappa ^{1/2}\alpha \epsilon > rsim 1\). Therefore, by choosing K sufficiently large we have \(\alpha \epsilon \le K(\kappa ) a\). This reduces to case (1) in the previous steps. The inequalities (B.5), (B.6) (B.7) with implicit constants depending on \(\kappa \) follow by the same arguments as above. Note that \(\langle \alpha \epsilon \rangle \) will not appear. \(\quad \square \)

1.2 Evans function estimate in the connection region

Recall the contours \(\Gamma _t^{\pm }\), \(\Gamma _E\), and \(\Gamma _j^{\pm }\). On the contour, it is clear that we may write \(c_i\) as a function of \(c_r\); denote this function \(c_i = \Gamma (c_r)\).

Lemma B.2

(Connection region Evans function). There exists a universal \(\nu _0\) such that for \(\nu \in (0,\nu _0]\), the Evans function \(D(\alpha ,c)\) is non-zero except in the region

$$\begin{aligned} \left\{ z \in {\mathbb {C}}\big | \Gamma (z_r) > z_i \right\} . \end{aligned}$$
(B.34)

Moreover, on \(\Gamma _t^{\pm }, \Gamma _j^{\pm }\) the lower bounds (B.2), (B.3), and (B.4) all hold.

Proof

The proof is similar to Lemma B.1 but some changes are required because \(c_i\) is no longer constant and the \( C_j^\star \)’s, defined as

$$\begin{aligned}&C_1^\star =\frac{-1-id}{\epsilon }=\frac{-1- c_r}{\epsilon }+\frac{-c_i-\alpha \nu }{\epsilon } i, \end{aligned}$$
(A.35)
$$\begin{aligned}&C_2^\star =\frac{-1-i{\overline{d}}}{\epsilon }=\frac{-1+ c_r }{\epsilon }+\frac{-c_i-\alpha \nu }{\epsilon } i, \end{aligned}$$
(A.36)

are no longer in the region specified in Lemma A.3. As above, one must bound a from below on the contour:

$$\begin{aligned} -\max _{c \in \Gamma _2^{\pm }\cup \Gamma _t^\pm } Re\frac{A_0'(C_j^\star +s)}{A_0(C_j^\star +s)}>0,\quad \forall s\in [0,{2}{\epsilon }^{-1}]. \end{aligned}$$
(A.37)

For this, we use again (B.33). Since the angle between the region \(\Gamma _2^+\cup \Gamma _t^+\) (\(\Gamma _2^-\cup \Gamma _t^-\)) and the positive imaginary (negative) axis are small, the argument \(C_j^\star +s\) in the equation (A.37) is inside the domain \(G_R\). This completes the proof of (A.37); the rest of the argument follows similarly to Lemma B.1. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedrossian, J., He, S. Inviscid Damping and Enhanced Dissipation of the Boundary Layer for 2D Navier–Stokes Linearized Around Couette Flow in a Channel. Commun. Math. Phys. 379, 177–226 (2020). https://doi.org/10.1007/s00220-020-03851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03851-9

Navigation