Skip to main content
Log in

An eco-friendly approach to preparing cellulose nanocrystals by precisely controlling the dissolution of natural cellulose in TBAH/H2O solvent

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Applications of cellulose nanocrystals (CNCs) in various fields of high value have been and are being widely studied. However, research about the fundamental preparation method has come to a standstill. This work aims to introduce a concept of progressive dissolution of cellulosic fibers and an eco-friendly way of preparing CNCs. By controlling TBAH concentration, the amphiphilicity and dissolving capability of TBAH/H2O can be regulated. Through a controlled partial dissolution of cellulose in the solvent, aqueous tetra-butylammonium hydroxide (TBAH), the fiber can be dissolved to make nanoscale particles (CNC suspensions). Polarized light microscopy provides a quantitative evaluation of the progress of dissolution, by which a processing window (43% TBAH/H2O, 30 min dissolution at room temperature) for preparing CNCs from cotton pulp has been determined. The multiscale cellulose products, including micron-scale, nanoscale, and well-dissolved products of cellulose, have been separated with the assistance of the derivatization process. There are interestingly homogeneous materials of cellulose I with a needle-like shape in the nanoscale products extracted. Furthermore, the cellulose raw materials can be extended from cotton pulp to wood pulp, bamboo pulp, straw pulp, and microcrystalline cellulose, indicating it to be a universal method. Analysis of XRD patterns of the raw and CNCs indicates that amorphous and less-crystalline cellulose can be precisely and controllably dissolved by the solvent, leaving CNCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe M, Fukaya Y, Ohno H (2012) Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem Commun (Cambridge, UK) 48(12):1808–1810

    Article  CAS  Google Scholar 

  • Abe M, Kuroda K, Ohno H (2015a) Maintenance-free cellulose solvents based on onium hydroxides. ACS Sustain Chem Eng 3(8):1771–1776

    Article  CAS  Google Scholar 

  • Abe M, Yamanaka S, Yamada H, Yamada T, Ohno H (2015b) Almost complete dissolution of woody biomass with tetra-n-butylphosphonium hydroxide aqueous solution at 60°C. Green Chem 17(8):4432–4438

    Article  CAS  Google Scholar 

  • Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843

    Article  CAS  Google Scholar 

  • Chen LM, Yu HY, Wang DC, Yang T, Yao JM, Tam KC (2019) Simple synthesis of flower-like manganese dioxide nanostructures on cellulose nanocrystals for high-performance supercapacitors and wearable electrodes. ACS Sustain Chem Eng 7(13):11823–11831

    Article  CAS  Google Scholar 

  • Ding S, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  CAS  Google Scholar 

  • Ding S, Liu Y, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1059

    Article  CAS  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65

    Article  CAS  Google Scholar 

  • Fan XM, Yu HY, Wang DC, Mao ZH, Yao J, Tam KC (2019) Facile and green synthesis of carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments. ACS Sustain Chem Eng 7(21):18067–18075

    Article  CAS  Google Scholar 

  • French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27(10):5445–5448

    Article  Google Scholar 

  • Guo J, Guo X, Wang S, Yin Y (2016) Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals. Carbohydrate Polym 135:248–255

    Article  CAS  Google Scholar 

  • Han S, Alvi NUH, Granlöf L, Granberg H (2019) A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels. Adv Sci

  • Jin J, Lee D, Im H-G, Han YC, Jeong EG, Rolandi M, Choi KC, Bae BS (2016) Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 28(26):5169–5175

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22(2):935–969

    Article  CAS  Google Scholar 

  • Kubicki JD, Yang H, Sawada D et al (2018) The shape of native plant cellulose microfibrils. Sci Rep 8(1):13983

    Article  Google Scholar 

  • Lau BBY, Luis ET, Hossain MM, Hart WES, Cencia-Lay B, Black JJ, Aldous L (2015) Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields. Bioresour Technol 197:252–259

    Article  CAS  Google Scholar 

  • Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J-H, Xu C (2015a) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohyd Polym 133:605–612

    Article  CAS  Google Scholar 

  • Li G, Fu Y, Shao Z, Zhang F, Qin M (2015b) Preparing cationic cellulose derivative in NaOH/urea aqueous solution and its performance as filler modifier. BioResources 10(4):7782–7794

    CAS  Google Scholar 

  • Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 110:415–422

    Article  CAS  Google Scholar 

  • Lu Q, Cai Z, Wang S, Lin F, Lu B, Chen Y, Huang B (2017) Controlled construction of nanostructured organic-inorganic hybrid material induced by nanocellulose. ACS Sustain Chem Eng 5(9):8456–8463

    Article  CAS  Google Scholar 

  • Luo H, Cha R, Li J, Hao W, Zhang Y, Zhou F (2019) Advances in tissue engineering of nanocellulose-based scaffolds: a review. Carbohyd Polym 224:115144

    Article  CAS  Google Scholar 

  • Miao J, Yu Y, Jiang Z, Zhang L (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23(2):1209–1219

    Article  CAS  Google Scholar 

  • Novo LP, Bras J, García A, Belgacem N, Curvelo AAS (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846

    Article  CAS  Google Scholar 

  • O'sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  CAS  Google Scholar 

  • Purushotham P, Ho R, Zimmer J (2020) Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science. https://doi.org/10.1126/science.abb2978

    Article  PubMed  Google Scholar 

  • Rovera C, Ghaani M, Santo N, Trabattoni S, Olsson RT, Romano D, Farris S (2018) Enzymatic hydrolysis in the green production of bacterial cellulose nanocrystals. ACS Sustain Chem Eng 6(6):7725–7734

    Article  CAS  Google Scholar 

  • Song J, Chen C, Zhu S, Zhu M, Hu L (2018) Processing bulk natural wood into a high-performance structural material. Nature 554(7691):224–228

    Article  CAS  Google Scholar 

  • Thomas S, Paul SA, Pothan LA, Deepa TD, Hussin MH, Haafiz MK (2011) Natural fibres: structure, properties and applications in cellulose fibers: bio- and nano-polymer composites–green chemistry and technology. In: Kalia S, Kaith BS, Kaur I (eds) Springer, Berlin, 7

  • Trache D, Hussin MH, Haafiz MK, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  Google Scholar 

  • Wan W, Ouyang H, Long W, Yan W, He M, Huang H, Wei Y (2019) Direct surface functionalization of cellulose nanocrystals with hyperbranched polymers through the anionic polymerization for ph-responsive intracellular drug delivery. ACS Sustain Chem Eng 7(23):19202–19212

    Article  CAS  Google Scholar 

  • Wang Y, Liu L, Chen P, Zhang L, Lu A (2018) Cationic hydrophobicity promotes dissolution of cellulose in aqueous basic solution by freezing–thawing. Phys Chem Chem Phys 20:14223–14233

    Article  CAS  Google Scholar 

  • Wei W, Meng F, Cui Y, Jiang M, Zhou Z (2017) Room temperature dissolution of cellulose in tetra-butylammonium hydroxide aqueous solvent through adjustment of solvent amphiphilicity. Cellulose 24:49–59

    Article  CAS  Google Scholar 

  • Wei W, Wei X, Gou G, Jiang M, Xu X, Wang Y, Zhou Z (2015) Improved dissolution of cellulose in quaternary ammonium hydroxide by adjusting temperature. RSC Adv 5:39080–39083

    Article  CAS  Google Scholar 

  • Yang X, Xie H, Du H, Zhang X, Zou Z, Zou Y (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain Chem Eng 7(7):7200–7208

    Article  CAS  Google Scholar 

  • Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohyd Polym 89(1):163–170

    Article  CAS  Google Scholar 

  • Zhang J, Luo N, Zhang X, Xu L, Wu J, He J, Zhang J (2016) All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain Chem Eng 4(8):4417–4423

    Article  CAS  Google Scholar 

  • Zhu M, Song J, Li T, Gong A, Wang Y, Dai J, Yao Y, Luo W, Henderson D, Hu L (2016) Highly anisotropic, highly transparent wood composites. Adv Mater 28(26):5181–5187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Sichuan Key Science and Technology Special Project (No. 2019ZDZX0018), Sichuan International Cooperation Project (No. 2018HH0087), and Fundamental Research Funds for the Central Universities (No. 2682016CX069). We would like to thank the Analytical and Testing Center of Southwest Jiaotong University for TEM and XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wei or Zuowan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17920 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yu, T., Tan, L. et al. An eco-friendly approach to preparing cellulose nanocrystals by precisely controlling the dissolution of natural cellulose in TBAH/H2O solvent. Cellulose 27, 9311–9324 (2020). https://doi.org/10.1007/s10570-020-03418-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03418-w

Keywords

Navigation