Skip to main content

Advertisement

Log in

Motile cilia genetics and cell biology: big results from little mice

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Justice MJ, Dhillon P (2016) Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech 9(2):101–103. https://doi.org/10.1242/dmm.024547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenthal N, Brown S (2007) The mouse ascending: perspectives for human-disease models. Nat Cell Biol 9(9):993–999. https://doi.org/10.1038/ncb437

    Article  CAS  PubMed  Google Scholar 

  3. Oliver PL, Bitoun E, Davies KE (2007) Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease. Mamm Genome 18(6–7):412–424. https://doi.org/10.1007/s00335-007-9014-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen BJ, Svenson KL (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8(1):58–69. https://doi.org/10.1038/nrg2025

    Article  CAS  PubMed  Google Scholar 

  5. Gurumurthy CB, Lloyd KCK (2019) Generating mouse models for biomedical research: technological advances. Dis Model Mech 12:1. https://doi.org/10.1242/dmm.029462

    Article  CAS  Google Scholar 

  6. Lutz C (2018) Mouse models of ALS: past, present and future. Brain Res 1693(Pt A):1–10. https://doi.org/10.1016/j.brainres.2018.03.024

    Article  CAS  PubMed  Google Scholar 

  7. Kosior N, Leavitt BR (2018) Murine models of huntington’s disease for evaluating therapeutics. Methods Mol Biol 1780:179–207. https://doi.org/10.1007/978-1-4939-7825-0_10

    Article  CAS  PubMed  Google Scholar 

  8. Carias KV, Wevrick R (2019) Preclinical testing in translational animal models of prader-willi syndrome: overview and gap analysis. Mol Ther Methods Clin Dev 13:344–358. https://doi.org/10.1016/j.omtm.2019.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noble JN, Mishra A (2019) Development and significance of mouse models in lymphoma research. Curr Hematol Malig Rep 14(2):119–126. https://doi.org/10.1007/s11899-019-00504-0

    Article  PubMed  Google Scholar 

  10. Lee L (2011) Mechanisms of mammalian ciliary motility: insights from primary ciliary dyskinesia genetics. Gene 473(2):57–66. https://doi.org/10.1016/j.gene.2010.11.006(S0378-1119(10)00432-4[pii])

    Article  CAS  PubMed  Google Scholar 

  11. Knowles MR, Zariwala M, Leigh M (2016) Primary ciliary dyskinesia. Clin Chest Med 37(3):449–461. https://doi.org/10.1016/j.ccm.2016.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  12. Horani A, Ferkol TW, Dutcher SK, Brody SL (2016) Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev 18:18–24. https://doi.org/10.1016/j.prrv.2015.09.001

    Article  PubMed  Google Scholar 

  13. Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    CAS  PubMed  Google Scholar 

  14. Bustamante-Marin XM, Ostrowski LE (2017) Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol 9:4. https://doi.org/10.1101/cshperspect.a028241

    Article  CAS  Google Scholar 

  15. Brown JM, Witman GB (2014) Cilia and diseases. Bioscience 64(12):1126–1137. https://doi.org/10.1093/biosci/biu174

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ishikawa T (2017) Axoneme structure from motile cilia. Cold Spring Harb Perspect Biol 9:1. https://doi.org/10.1101/cshperspect.a028076

    Article  CAS  Google Scholar 

  17. Paff T, Loges NT, Aprea I, Wu K, Bakey Z, Haarman EG, Daniels JMA, Sistermans EA, Bogunovic N, Dougherty GW, Hoben IM, Grosse-Onnebrink J, Matter A, Olbrich H, Werner C, Pals G, Schmidts M, Omran H, Micha D (2017) Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet 100(1):160–168. https://doi.org/10.1016/j.ajhg.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  18. Olcese C, Patel MP, Shoemark A, Kiviluoto S, Legendre M, Williams HJ, Vaughan CK, Hayward J, Goldenberg A, Emes RD, Munye MM, Dyer L, Cahill T, Bevillard J, Gehrig C, Guipponi M, Chantot S, Duquesnoy P, Thomas L, Jeanson L, Copin B, Tamalet A, Thauvin-Robinet C, Papon JF, Garin A, Pin I, Vera G, Aurora P, Fassad MR, Jenkins L, Boustred C, Cullup T, Dixon M, Onoufriadis A, Bush A, Chung EM, Antonarakis SE, Loebinger MR, Wilson R, Armengot M, Escudier E, Hogg C, Group UKR, Amselem S, Sun Z, Bartoloni L, Blouin JL, Mitchison HM (2017) X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 8:14279. https://doi.org/10.1038/ncomms14279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, Clement A, Geremek M, Delaisi B, Bridoux AM, Coste A, Witt M, Duriez B, Amselem S (2006) RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 43(4):326–333

    CAS  PubMed  Google Scholar 

  20. Wallmeier J, Frank D, Shoemark A, Nothe-Menchen T, Cindric S, Olbrich H, Loges NT, Aprea I, Dougherty GW, Pennekamp P, Kaiser T, Mitchison HM, Hogg C, Carr SB, Zariwala MA, Ferkol T, Leigh MW, Davis SD, Atkinson J, Dutcher SK, Knowles MR, Thiele H, Altmuller J, Krenz H, Woste M, Brentrup A, Ahrens F, Vogelberg C, Morris-Rosendahl DJ, Omran H (2019) De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet 105(5):1030–1039. https://doi.org/10.1016/j.ajhg.2019.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19(13):R526–535. https://doi.org/10.1016/j.cub.2009.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mitchison HM, Valente EM (2017) Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 241(2):294–309. https://doi.org/10.1002/path.4843

    Article  PubMed  Google Scholar 

  23. Reiter JF, Leroux MR (2017) Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 18(9):533–547. https://doi.org/10.1038/nrm.2017.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Poprzeczko M, Bicka M, Farahat H, Bazan R, Osinka A, Fabczak H, Joachimiak E, Wloga D (2019) Rare human diseases: model organisms in deciphering the molecular basis of primary ciliary dyskinesia. Cells 8:12. https://doi.org/10.3390/cells8121614

    Article  CAS  Google Scholar 

  25. Loreng TD, Smith EF (2017) The central apparatus of cilia and eukaryotic flagella. Cold Spring Harb Perspect Biol 9:2. https://doi.org/10.1101/cshperspect.a028118

    Article  CAS  Google Scholar 

  26. King SM (2016) Axonemal dynein arms. Cold Spring Harb Perspect Biol 8:11. https://doi.org/10.1101/cshperspect.a028100

    Article  CAS  Google Scholar 

  27. Wirschell M, Yamamoto R, Alford L, Gokhale A, Gaillard A, Sale WS (2011) Regulation of ciliary motility: conserved protein kinases and phosphatases are targeted and anchored in the ciliary axoneme. Arch Biochem Biophys 510(2):93–100. https://doi.org/10.1016/j.abb.2011.04.003(S0003-9861(11)00144-5[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu X, Liu Y, Yang P (2017) Radial spokes-A snapshot of the motility regulation, assembly, and evolution of cilia and flagella. Cold Spring Harb Perspect Biol 9:5. https://doi.org/10.1101/cshperspect.a028126

    Article  CAS  Google Scholar 

  29. Meunier A, Azimzadeh J (2016) Multiciliated cells in animals. Cold Spring Harb Perspect Biol 8:12. https://doi.org/10.1101/cshperspect.a028233

    Article  CAS  Google Scholar 

  30. Spassky N, Meunier A (2017) The development and functions of multiciliated epithelia. Nat Rev Mol Cell Biol 18(7):423–436. https://doi.org/10.1038/nrm.2017.21

    Article  CAS  PubMed  Google Scholar 

  31. Boutin C, Kodjabachian L (2019) Biology of multiciliated cells. Curr Opin Genet Dev 56:1–7. https://doi.org/10.1016/j.gde.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  32. Wingfield JL, Lechtreck KF (2018) Chlamydomonas basal bodies as flagella organizing centers. Cells 7:7. https://doi.org/10.3390/cells7070079

    Article  CAS  Google Scholar 

  33. O'Toole ET, Giddings TH Jr, Porter ME, Ostrowski LE (2012) Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton (Hoboken) 69(8):577–590. https://doi.org/10.1002/cm.21035

    Article  CAS  Google Scholar 

  34. Burgoyne T, Dixon M, Luther P, Hogg C, Shoemark A (2012) Generation of a three-dimensional ultrastructural model of human respiratory cilia. Am J Respir Cell Mol Biol 47(6):800–806. https://doi.org/10.1165/rcmb.2011-0440OC

    Article  CAS  PubMed  Google Scholar 

  35. Lin J, Yin W, Smith MC, Song K, Leigh MW, Zariwala MA, Knowles MR, Ostrowski LE, Nicastro D (2014) Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat Commun 5:5727. https://doi.org/10.1038/ncomms6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao L, Hou Y, McNeill NA, Witman GB (2020) The unity and diversity of the ciliary central apparatus. Philos Trans R Soc Lond B Biol Sci 375(1792):20190164. https://doi.org/10.1098/rstb.2019.0164

    Article  CAS  PubMed  Google Scholar 

  37. Lee L (2013) Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 91(9):1117–1132. https://doi.org/10.1002/jnr.23238

    Article  CAS  PubMed  Google Scholar 

  38. Finn R, Evans CC, Lee L (2014) Strain-dependent brain defects in mouse models of primary ciliary dyskinesia with mutations in Pcdp1 and Spef2. Neuroscience 277:552–567. https://doi.org/10.1016/j.neuroscience.2014.07.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McKenzie CW, Preston CC, Finn R, Eyster KM, Faustino RS, Lee L (2018) Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction. Sci Rep 8(1):13370. https://doi.org/10.1038/s41598-018-31743-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kamiya R, Yagi T (2014) Functional diversity of axonemal dyneins as assessed by in vitro and in vivo motility assays of Chlamydomonas mutants. Zoolog Sci 31(10):633–644. https://doi.org/10.2108/zs140066

    Article  PubMed  Google Scholar 

  41. Blum M, Ott T (2018) Xenopus: an undervalued model organism to study and model human genetic disease. Cells Tissues Org 205(5–6):303–313. https://doi.org/10.1159/000490898

    Article  CAS  Google Scholar 

  42. Vladar EK, Brody SL (2013) Analysis of ciliogenesis in primary culture mouse tracheal epithelial cells. Methods Enzymol 525:285–309. https://doi.org/10.1016/B978-0-12-397944-5.00014-6

    Article  CAS  PubMed  Google Scholar 

  43. You Y, Brody SL (2013) Culture and differentiation of mouse tracheal epithelial cells. Methods Mol Biol 945:123–143. https://doi.org/10.1007/978-1-62703-125-7_9

    Article  CAS  PubMed  Google Scholar 

  44. Delgehyr N, Meunier A, Faucourt M, Bosch Grau M, Strehl L, Janke C, Spassky N (2015) Ependymal cell differentiation, from monociliated to multiciliated cells. Methods Cell Biol 127:19–35. https://doi.org/10.1016/bs.mcb.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  45. Ermakov A, Stevens JL, Whitehill E, Robson JE, Pieles G, Brooker D, Goggolidou P, Powles-Glover N, Hacker T, Young SR, Dear N, Hirst E, Tymowska-Lalanne Z, Briscoe J, Bhattacharya S, Norris DP (2009) Mouse mutagenesis identifies novel roles for left-right patterning genes in pulmonary, craniofacial, ocular, and limb development. Dev Dyn 238(3):581–594. https://doi.org/10.1002/dvdy.21874

    Article  PubMed  Google Scholar 

  46. Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, Chen Y, Chatterjee B, Devine W, Damerla RR, Chang C, Yagi H, San Agustin JT, Thahir M, Anderton S, Lawhead C, Vescovi A, Pratt H, Morgan J, Haynes L, Smith CL, Eppig JT, Reinholdt L, Francis R, Leatherbury L, Ganapathiraju MK, Tobita K, Pazour GJ, Lo CW (2015) Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 521(7553):520–524. https://doi.org/10.1038/nature14269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Viswanadha R, Sale WS, Porter ME (2017) Ciliary motility: regulation of axonemal dynein motors. Cold Spring Harb Perspect Biol 9:8. https://doi.org/10.1101/cshperspect.a018325

    Article  CAS  Google Scholar 

  48. Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, Reinhardt R, Hennig S, Lehrach H, Konietzko N, Zariwala M, Noone PG, Knowles M, Mitchison HM, Meeks M, Chung EM, Hildebrandt F, Sudbrak R, Omran H (2002) Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 30(2):143–144

    CAS  PubMed  Google Scholar 

  49. Ibanez-Tallon I, Gorokhova S, Heintz N (2002) Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 11(6):715–721

    CAS  PubMed  Google Scholar 

  50. Ibanez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen UP, North A, Heintz N, Omran H (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13(18):2133–2141

    CAS  PubMed  Google Scholar 

  51. Tan SY, Rosenthal J, Zhao XQ, Francis RJ, Chatterjee B, Sabol SL, Linask KL, Bracero L, Connelly PS, Daniels MP, Yu Q, Omran H, Leatherbury L, Lo CW (2007) Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J Clin Invest 117(12):3742–3752. https://doi.org/10.1172/JCI33284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Solomon GM, Francis R, Chu KK, Birket SE, Gabriel G, Trombley JE, Lemke KL, Klena N, Turner B, Tearney GJ, Lo CW, Rowe SM (2017) Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography. JCI Insight 2(5):e91702. https://doi.org/10.1172/jci.insight.91702

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V, Roger G, Clement A, Goossens M, Amselem S, Duriez B (1999) Loss-of-function mutations in a human gene related to chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am J Hum Genet 65(6):1508–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ostrowski LE, Yin W, Rogers TD, Busalacchi KB, Chua M, O'Neal WK, Grubb BR (2010) Conditional deletion of dnaic1 in a murine model of primary ciliary dyskinesia causes chronic rhinosinusitis. Am J Respir Cell Mol Biol 43(1):55–63. https://doi.org/10.1165/rcmb.2009-0118OC(2009-0118OC[pii])

    Article  CAS  PubMed  Google Scholar 

  55. Ostrowski LE, Yin W, Patel M, Sechelski J, Rogers T, Burns K, Grubb BR, Olsen JC (2014) Restoring ciliary function to differentiated primary ciliary dyskinesia cells with a lentiviral vector. Gene Ther 21(3):253–261. https://doi.org/10.1038/gt.2013.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Layton WM Jr (1976) Random determination of a developmental process: reversal of normal visceral asymmetry in the mouse. J Hered 67(6):336–338. https://doi.org/10.1093/oxfordjournals.jhered.a108749

    Article  PubMed  Google Scholar 

  57. Supp DM, Witte DP, Potter SS, Brueckner M (1997) Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 389(6654):963–966

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Burnicka-Turek O, Steimle JD, Huang W, Felker L, Kamp A, Kweon J, Peterson M, Reeves RH, Maslen CL, Gruber PJ, Yang XH, Shendure J, Moskowitz IP (2016) Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms. Hum Mol Genet 25(14):3011–3028. https://doi.org/10.1093/hmg/ddw155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Supp DM, Brueckner M, Kuehn MR, Witte DP, Lowe LA, McGrath J, Corrales J, Potter SS (1999) Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. Development 126(23):5495–5504

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lucas JS, Adam EC, Goggin PM, Jackson CL, Powles-Glover N, Patel SH, Humphreys J, Fray MD, Falconnet E, Blouin JL, Cheeseman MT, Bartoloni L, Norris DP, Lackie PM (2012) Static respiratory cilia associated with mutations in Dnahc11/DNAH11: a mouse model of PCD. Hum Mutat 33(3):495–503. https://doi.org/10.1002/humu.22001

    Article  CAS  PubMed  Google Scholar 

  61. Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M, Mitchison HM, Chung EM, Delozier-Blanchet CD, Craigen WJ, Antonarakis SE (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 99(16):10282–10286

    CAS  PubMed  Google Scholar 

  62. Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, de Santi MM, Olbrich H, Fliegauf M, Failly M, Liebers U, Collura M, Gaedicke G, Mundlos S, Wahn U, Blouin JL, Niggemann B, Omran H, Antonarakis SE, Bartoloni L (2008) Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat 29(2):289–298

    CAS  PubMed  Google Scholar 

  63. Dougherty GW, Loges NT, Klinkenbusch JA, Olbrich H, Pennekamp P, Menchen T, Raidt J, Wallmeier J, Werner C, Westermann C, Ruckert C, Mirra V, Hjeij R, Memari Y, Durbin R, Kolb-Kokocinski A, Praveen K, Kashef MA, Kashef S, Eghtedari F, Haffner K, Valmari P, Baktai G, Aviram M, Bentur L, Amirav I, Davis EE, Katsanis N, Brueckner M, Shaposhnykov A, Pigino G, Dworniczak B, Omran H (2016) DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes. Am J Respir Cell Mol Biol 55(2):213–224. https://doi.org/10.1165/rcmb.2015-0353OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Neesen J, Kirschner R, Ochs M, Schmiedl A, Habermann B, Mueller C, Holstein AF, Nuesslein T, Adham I, Engel W (2001) Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet 10(11):1117–1128

    CAS  PubMed  Google Scholar 

  65. Hu J, Lessard C, Longstaff C, O'Brien M, Palmer K, Reinholdt L, Eppig J, Schimenti J, Handel MA (2019) ENU-induced mutant allele of Dnah1, ferf1, causes abnormal sperm behavior and fertilization failure in mice. Mol Reprod Dev 86(4):416–425. https://doi.org/10.1002/mrd.23120

    Article  CAS  PubMed  Google Scholar 

  66. Imtiaz F, Allam R, Ramzan K, Al-Sayed M (2015) Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med Genet 16:14. https://doi.org/10.1186/s12881-015-0162-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ben Khelifa M, Coutton C, Zouari R, Karaouzene T, Rendu J, Bidart M, Yassine S, Pierre V, Delaroche J, Hennebicq S, Grunwald D, Escalier D, Pernet-Gallay K, Jouk PS, Thierry-Mieg N, Toure A, Arnoult C, Ray PF (2014) Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 94(1):95–104. https://doi.org/10.1016/j.ajhg.2013.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, Damerla R, Dougherty GW, Abouhamed M, Olbrich H, Loges NT, Pennekamp P, Davis EE, Carvalho CM, Pehlivan D, Werner C, Raidt J, Kohler G, Haffner K, Reyes-Mugica M, Lupski JR, Leigh MW, Rosenfeld M, Morgan LC, Knowles MR, Lo CW, Katsanis N, Omran H (2013) ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Hum Genet 93(2):357–367. https://doi.org/10.1016/j.ajhg.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Onoufriadis A, Shoemark A, Munye MM, James CT, Schmidts M, Patel M, Rosser EM, Bacchelli C, Beales PL, Scambler PJ, Hart SL, Danke-Roelse JE, Sloper JJ, Hull S, Hogg C, Emes RD, Pals G, Moore AT, Chung EM, Mitchison HM (2014) Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J Med Genet 51(1):61–67. https://doi.org/10.1136/jmedgenet-2013-101938(Uk10K)

    Article  CAS  PubMed  Google Scholar 

  70. Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP, Morante NF, Gabriel GC, Lemke KL, Li Y, Pennekamp P, Menchen T, Konert F, Marthin JK, Mans DA, Letteboer SJ, Werner C, Burgoyne T, Westermann C, Rutman A, Carr IM, O'Callaghan C, Moya E, Chung EM, Consortium UK, Sheridan E, Nielsen KG, Roepman R, Bartscherer K, Burdine RD, Lo CW, Omran H, Mitchison HM (2014) CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet 95(3):257–274. https://doi.org/10.1016/j.ajhg.2014.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiani F, Orsini T, Gambadoro A, Pasquini M, Putti S, Cirilli M, Ermakova O, Tocchini-Valentini GP (2019) Functional loss of Ccdc1 51 leads to hydrocephalus in a mouse model of primary ciliary dyskinesia. Dis Model Mech 12:8. https://doi.org/10.1242/dmm.038489

    Article  CAS  Google Scholar 

  72. Zhou J, Yang F, Leu NA, Wang PJ (2012) MNS1 is essential for spermiogenesis and motile ciliary functions in mice. PLoS Genet 8(3):e1002516. https://doi.org/10.1371/journal.pgen.1002516(PGENETICS-D-11-01820[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ta-Shma A, Hjeij R, Perles Z, Dougherty GW, Abu Zahira I, Letteboer SJF, Antony D, Darwish A, Mans DA, Spittler S, Edelbusch C, Cindric S, Nothe-Menchen T, Olbrich H, Stuhlmann F, Aprea I, Pennekamp P, Loges NT, Breuer O, Shaag A, Rein A, Gulec EY, Gezdirici A, Abitbul R, Elias N, Amirav I, Schmidts M, Roepman R, Elpeleg O, Omran H (2018) Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility. PLoS Genet 14(8):e1007602. https://doi.org/10.1371/journal.pgen.1007602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wallmeier J, Shiratori H, Dougherty GW, Edelbusch C, Hjeij R, Loges NT, Menchen T, Olbrich H, Pennekamp P, Raidt J, Werner C, Minegishi K, Shinohara K, Asai Y, Takaoka K, Lee C, Griese M, Memari Y, Durbin R, Kolb-Kokocinski A, Sauer S, Wallingford JB, Hamada H, Omran H (2016) TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization. Am J Hum Genet 99(2):460–469. https://doi.org/10.1016/j.ajhg.2016.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oda T, Yanagisawa H, Kamiya R, Kikkawa M (2014) A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346(6211):857–860. https://doi.org/10.1126/science.1260214

    Article  CAS  PubMed  Google Scholar 

  76. Abdelhamed Z, Vuong SM, Hill L, Shula C, Timms A, Beier D, Campbell K, Mangano FT, Stottmann RW, Goto J (2018) A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development 145:1. https://doi.org/10.1242/dev.154500

    Article  CAS  Google Scholar 

  77. Antony D, Becker-Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, Wilson R, Taylor-Cox T, Dewar A, Jackson C, Goggin P, Loges NT, Olbrich H, Jaspers M, Jorissen M, Leigh MW, Wolf WE, Daniels ML, Noone PG, Ferkol TW, Sagel SD, Rosenfeld M, Rutman A, Dixit A, O’Callaghan C, Lucas JS, Hogg C, Scambler PJ, EmesChung RDEM, Shoemark A, Knowles MR, Omran H, Mitchison HM (2013) Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat 34(3):462–472. https://doi.org/10.1002/humu.22261(Uk10k)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G, Belmont J, Beydon N, Billen F, Clement A, Clercx C, Coste A, Crosbie R, de Blic J, Deleuze S, Duquesnoy P, Escalier D, Escudier E, Fliegauf M, Horvath J, Hill K, Jorissen M, Just J, Kispert A, Lathrop M, Loges NT, Marthin JK, Momozawa Y, Montantin G, Nielsen KG, Olbrich H, Papon JF, Rayet I, Roger G, Schmidts M, Tenreiro H, Towbin JA, Zelenika D, Zentgraf H, Georges M, Lequarre AS, Katsanis N, Omran H, Amselem S (2011) CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 43(1):72–78 (ng.726[pii]10.1038/ng.726)

    CAS  PubMed  Google Scholar 

  79. Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, McSheene J, Loges NT, Olbrich H, Haeffner K, Fliegauf M, Horvath J, Reinhardt R, Nielsen KG, Marthin JK, Baktai G, Anderson KV, Geisler R, Niswander L, Omran H, Burdine RD (2011) The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43(1):79–84 (ng.727[pii]10.1038/ng.727)

    CAS  PubMed  Google Scholar 

  80. Sugrue KF, Zohn IE (2017) Mechanism for generation of left isomerism in Ccdc40 mutant embryos. PLoS ONE 12(2):e0171180. https://doi.org/10.1371/journal.pone.0171180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Freshour J, Yokoyama R, Mitchell DR (2007) Chlamydomonas flagellar outer row dynein assembly protein ODA7 interacts with both outer row and I1 inner row dyneins. J Biol Chem 282(8):5404–5412

    CAS  PubMed  Google Scholar 

  82. Duquesnoy P, Escudier E, Vincensini L, Freshour J, Bridoux AM, Coste A, Deschildre A, de Blic J, Legendre M, Montantin G, Tenreiro H, Vojtek AM, Loussert C, Clement A, Escalier D, Bastin P, Mitchell DR, Amselem S (2009) Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am J Hum Genet 85(6):890–896

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Loges NT, Olbrich H, Becker-Heck A, Haffner K, Heer A, Reinhard C, Schmidts M, Kispert A, Zariwala MA, Leigh MW, Knowles MR, Zentgraf H, Seithe H, Nurnberg G, Nurnberg P, Reinhardt R, Omran H (2009) Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet 85(6):883–889

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hartill VL, van de Hoek G, Patel MP, Little R, Watson CM, Berry IR, Shoemark A, Abdelmottaleb D, Parkes E, Bacchelli C, Szymanska K, Knoers NV, Scambler PJ, Ueffing M, Boldt K, Yates R, Winyard PJ, Adler B, Moya E, Hattingh L, Shenoy A, Hogg C, Sheridan E, Roepman R, Norris D, Mitchison HM, Giles RH, Johnson CA (2018) DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport. Hum Mol Genet 27(3):529–545. https://doi.org/10.1093/hmg/ddx422

    Article  CAS  PubMed  Google Scholar 

  85. Miao C, Jiang Q, Li H, Zhang Q, Bai B, Bao Y, Zhang T (2016) Mutations in the motile cilia gene DNAAF1 are associated with neural tube defects in humans. G3 (Bethesda) 6(10):3307–3316. https://doi.org/10.1534/g3.116.033696

    Article  CAS  Google Scholar 

  86. Ha S, Lindsay AM, Timms AE, Beier DR (2016) Mutations in Dnaaf1 and Lrrc48 cause hydrocephalus, laterality defects, and sinusitis in mice. G3 (Bethesda) 6(8):2479–2487. https://doi.org/10.1534/g3.116.030791

    Article  CAS  PubMed Central  Google Scholar 

  87. Omran H, Kobayashi D, Olbrich H, Tsukahara T, Loges NT, Hagiwara H, Zhang Q, Leblond G, O'Toole E, Hara C, Mizuno H, Kawano H, Fliegauf M, Yagi T, Koshida S, Miyawaki A, Zentgraf H, Seithe H, Reinhardt R, Watanabe Y, Kamiya R, Mitchell DR, Takeda H (2008) Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456(7222):611–616

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Matsuo M, Shimada A, Koshida S, Saga Y, Takeda H (2013) The establishment of rotational polarity in the airway and ependymal cilia: analysis with a novel cilium motility mutant mouse. Am J Physiol Lung Cell Mol Physiol 304(11):L736–745. https://doi.org/10.1152/ajplung.00425.2012

    Article  CAS  PubMed  Google Scholar 

  89. Cheong A, Degani R, Tremblay KD, Mager J (2019) A null allele of Dnaaf2 displays embryonic lethality and mimics human ciliary dyskinesia. Hum Mol Genet 28(16):2775–2784. https://doi.org/10.1093/hmg/ddz106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, Shook B, Cantino M, Schwartz D, Jahnke C, Olbrich H, Werner C, Raidt J, Pennekamp P, Abouhamed M, Hjeij R, Kohler G, Griese M, Li Y, Lemke K, Klena N, Liu X, Gabriel G, Tobita K, Jaspers M, Morgan LC, Shapiro AJ, Letteboer SJ, Mans DA, Carson JL, Leigh MW, Wolf WE, Chen S, Lucas JS, Onoufriadis A, Plagnol V, Schmidts M, Boldt K, Roepman R, Zariwala MA, Lo CW, Mitchison HM, Knowles MR, Burdine RD, Loturco JJ, Omran H (2013) DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 45(9):995–1003. https://doi.org/10.1038/ng.2707(Uk10K)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Le Moal F, Montantin G, Jeanson L, Tamalet A, Papon JF, Siffroi JP, Rives N, Mitchell V, de Blic J, Coste A, Clement A, Escalier D, Toure A, Escudier E, Amselem S (2012) Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet 91(5):958–964. https://doi.org/10.1016/j.ajhg.2012.10.003(S0002-9297(12)00518-6[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Horani A, Ferkol TW, Shoseyov D, Wasserman MG, Oren YS, Kerem B, Amirav I, Cohen-Cymberknoh M, Dutcher SK, Brody SL, Elpeleg O, Kerem E (2013) LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLoS ONE 8(3):e59436. https://doi.org/10.1371/journal.pone.0059436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Inaba Y, Shinohara K, Botilde Y, Nabeshima R, Takaoka K, Ajima R, Lamri L, Takeda H, Saga Y, Nakamura T, Hamada H (2016) Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6. Genes Cells 21(7):728–739. https://doi.org/10.1111/gtc.12380

    Article  CAS  PubMed  Google Scholar 

  94. Li Y, Zhao L, Yuan S, Zhang J, Sun Z (2017) Axonemal dynein assembly requires the R2TP complex component pontin. Development 144(24):4684–4693. https://doi.org/10.1242/dev.152314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dafinger C, Rinschen MM, Borgal L, Ehrenberg C, Basten SG, Franke M, Hohne M, Rauh M, Gobel H, Bloch W, Wunderlich FT, Peters DJM, Tasche D, Mishra T, Habbig S, Dotsch J, Muller RU, Bruning JC, Persigehl T, Giles RH, Benzing T, Schermer B, Liebau MC (2018) Targeted deletion of the AAA-ATPase Ruvbl1 in mice disrupts ciliary integrity and causes renal disease and hydrocephalus. Exp Mol Med 50(6):75. https://doi.org/10.1038/s12276-018-0108-z

    Article  CAS  Google Scholar 

  96. Dong F, Shinohara K, Botilde Y, Nabeshima R, Asai Y, Fukumoto A, Hasegawa T, Matsuo M, Takeda H, Shiratori H, Nakamura T, Hamada H (2014) Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J Cell Biol 204(2):203–213. https://doi.org/10.1083/jcb.201304076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, Hurd TW, Hjeij R, Dell SD, Chaki M, Dougherty GW, Adan M, Spear PC, Esteve-Rudd J, Loges NT, Rosenfeld M, Diaz KA, Olbrich H, Wolf WE, Sheridan E, Batten TF, Halbritter J, Porath JD, Kohl S, Lovric S, Hwang DY, Pittman JE, Burns KA, Ferkol TW, Sagel SD, Olivier KN, Morgan LC, Werner C, Raidt J, Pennekamp P, Sun Z, Zhou W, Airik R, Natarajan S, Allen SJ, Amirav I, Wieczorek D, Landwehr K, Nielsen K, Schwerk N, Sertic J, Kohler G, Washburn J, Levy S, Fan S, Koerner-Rettberg C, Amselem S, Williams DS, Mitchell BJ, Drummond IA, Otto EA, Omran H, Knowles MR, Hildebrandt F (2013) ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet 93(2):336–345. https://doi.org/10.1016/j.ajhg.2013.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, Zur Lage PI, de Castro SC, Bartoloni L, Gallone G, Petridi S, Woollard WJ, Antony D, Schmidts M, Didonna T, Makrythanasis P, Bevillard J, Mongan NP, Djakow J, Pals G, Lucas JS, Marthin JK, Nielsen KG, Santoni F, Guipponi M, Hogg C, Antonarakis SE, Emes RD, Chung EM, Greene ND, Blouin JL, Jarman AP, Mitchison HM (2013) Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet 93(2):346–356. https://doi.org/10.1016/j.ajhg.2013.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cho KJ, Noh SH, Han SM, Choi WI, Kim HY, Yu S, Lee JS, Rim JH, Lee MG, Hildebrandt F, Gee HY (2018) ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms. PLoS Genet 14(3):e1007316. https://doi.org/10.1371/journal.pgen.1007316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, Zur Lage P, Shoemark A, Garcia-Munoz A, Shimada A, Takeda H, Edlich F, Takahashi S, von Kreigsheim A, Jarman AP, Mill P (2018) ZMYND10 functions in a chaperone relay during axonemal dynein assembly. Elife. https://doi.org/10.7554/eLife.34389

    Article  PubMed  PubMed Central  Google Scholar 

  101. Teves ME, Nagarkatti-Gude DR, Zhang Z, Strauss JF 3rd (2016) Mammalian axoneme central pair complex proteins: broader roles revealed by gene knockout phenotypes. Cytoskelet (Hoboken) 73(1):3–22. https://doi.org/10.1002/cm.21271

    Article  CAS  Google Scholar 

  102. Gruneberg H (1943) Two new mutant genes in the house mouse. J Genet 45:22–28

    Google Scholar 

  103. Berry RJ (1961) The inheritance and pathogenesis of hydrocephalus-3 in the mouse. J Path Bact 81(1):157–167

    Google Scholar 

  104. Raimondi AJ, Bailey OT, McLone DG, Lawson RF, Echeverry A (1973) The pathophysiology and morphology of murine hydrocephalus in Hy-3 and Ch mutants. Surg Neurol 1(1):50–55

    CAS  PubMed  Google Scholar 

  105. Lawson RF, Raimondi AJ (1973) Hydrocephalus-3, a murine mutant: I. Alterations in fine structure of choroid plexus and ependyma. Surg Neurol 1(2):115–128

    CAS  PubMed  Google Scholar 

  106. McLone DG, Bondareff W, Raimondi AJ (1973) Hydrocephalus-3, a murine mutant. II. Changes in the brain extracellular space. Surg Neurol 1(4):233–242

    CAS  PubMed  Google Scholar 

  107. Lechtreck KF, Witman GB (2007) Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility. J Cell Biol 176(4):473–482

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lechtreck KF, Delmotte P, Robinson ML, Sanderson MJ, Witman GB (2008) Mutations in Hydin impair ciliary motility in mice. J Cell Biol 180(3):633–643. https://doi.org/10.1083/jcb.200710162(jcb.200710162[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, Raidt J, Banki NF, Shoemark A, Burgoyne T, Al Turki S, Hurles ME, Kohler G, Schroeder J, Nurnberg G, Nurnberg P, Chung EM, Reinhardt R, Marthin JK, Nielsen KG, Mitchison HM, Omran H (2012) Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. https://doi.org/10.1016/j.ajhg.2012.08.016(S0002-9297(12)00428-4[pii])

    Article  PubMed  PubMed Central  Google Scholar 

  110. Davy BE, Robinson ML (2003) Congenital hydrocephalus in hy3 mice is caused by a frameshift mutation in Hydin, a large novel gene. Hum Mol Genet 12(10):1163–1170

    CAS  PubMed  Google Scholar 

  111. Smith EF, Lefebvre PA (1996) PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella. J Cell Biol 132(3):359–370

    CAS  PubMed  Google Scholar 

  112. Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss IJ (2002) Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol 22(17):6298–6305

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Li X, Xu L, Li J, Li B, Bai X, Strauss JF 3rd, Zhang Z, Wang H (2014) Otitis media in sperm-associated antigen 6 (Spag6)-deficient mice. PLoS ONE 9(11):e112879. https://doi.org/10.1371/journal.pone.0112879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Teves ME, Sears PR, Li W, Zhang Z, Tang W, van Reesema L, Costanzo RM, Davis CW, Knowles MR, Strauss JF 3rd, Zhang Z (2014) Sperm-associated antigen 6 (SPAG6) deficiency and defects in ciliogenesis and cilia function: polarity, density, and beat. PLoS ONE 9(10):e107271. https://doi.org/10.1371/journal.pone.0107271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang Z, Kostetskii I, Tang W, Haig-Ladewig L, Sapiro R, Wei Z, Patel AM, Bennett J, Gerton GL, Moss SB, Radice GL, Strauss JF 3rd (2006) Deficiency of SPAG16L causes male infertility associated with impaired sperm motility. Biol Reprod 74(4):751–759

    CAS  PubMed  Google Scholar 

  116. Smith EF, Lefebvre PA (1997) PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in chlamydomonas flagella. Mol Biol Cell 8(3):455–467

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang Z, Sapiro R, Kapfhamer D, Bucan M, Bray J, Chennathukuzhi V, McNamara P, Curtis A, Zhang M, Blanchette-Mackie EJ, Strauss JF 3rd (2002) A sperm-associated WD repeat protein orthologous to chlamydomonas PF20 associates with Spag6, the mammalian orthologue of chlamydomonas PF16. Mol Cell Biol 22(22):7993–8004

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang Z, Tang W, Zhou R, Shen X, Wei Z, Patel AM, Povlishock JT, Bennett J, Strauss JF 3rd (2007) Accelerated mortality from hydrocephalus and pneumonia in mice with a combined deficiency of SPAG6 and SPAG16L reveals a functional interrelationship between the two central apparatus proteins. Cell Motil Cytoskeleton 64(5):360–376

    CAS  PubMed  Google Scholar 

  119. Rupp G, O’Toole E, Porter ME (2001) The chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. Mol Biol Cell 12(3):739–751

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wargo MJ, Dymek EE, Smith EF (2005) Calmodulin and PF6 are components of a complex that localizes to the C1 microtubule of the flagellar central apparatus. J Cell Sci 118(Pt 20):4655–4665. https://doi.org/10.1242/jcs.02585(jcs.02585[pii])

    Article  CAS  PubMed  Google Scholar 

  121. Teves ME, Zhang Z, Costanzo RM, Henderson SC, Corwin FD, Zweit J, Sundaresan G, Subler M, Salloum FN, Rubin BK, Strauss JF 3rd (2013) Sperm-associated antigen-17 gene is essential for motile cilia function and neonatal survival. Am J Respir Cell Mol Biol 48(6):765–772. https://doi.org/10.1165/rcmb.2012-0362OC(rcmb.2012-0362OC[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kazarian E, Son H, Sapao P, Li W, Zhang Z, Strauss JF, Teves ME (2018) SPAG17 is required for male germ cell differentiation and fertility. Int J Mol Sci 19:4. https://doi.org/10.3390/ijms19041252

    Article  CAS  Google Scholar 

  123. Xu X, Sha YW, Mei LB, Ji ZY, Qiu PP, Ji H, Li P, Wang T, Li L (2018) A familial study of twins with severe asthenozoospermia identified a homozygous SPAG17 mutation by whole-exome sequencing. Clin Genet 93(2):345–349. https://doi.org/10.1111/cge.13059

    Article  CAS  PubMed  Google Scholar 

  124. Andjelkovic M, Minic P, Vreca M, Stojiljkovic M, Skakic A, Sovtic A, Rodic M, Skodric-Trifunovic V, Maric N, Visekruna J, Spasovski V, Pavlovic S (2018) Genomic profiling supports the diagnosis of primary ciliary dyskinesia and reveals novel candidate genes and genetic variants. PLoS ONE 13(10):e0205422. https://doi.org/10.1371/journal.pone.0205422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ostrowski LE, Andrews K, Potdar P, Matsuura H, Jetten A, Nettesheim P (1999) Cloning and characterization of KPL2, a novel gene induced during ciliogenesis of tracheal epithelial cells. Am J Respir Cell Mol Biol 20(4):675–683. https://doi.org/10.1165/ajrcmb.20.4.3496

    Article  CAS  PubMed  Google Scholar 

  126. Zhang H, Mitchell DR (2004) Cpc1, a chlamydomonas central pair protein with an adenylate kinase domain. J Cell Sci 117(Pt 18):4179–4188

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sironen A, Kotaja N, Mulhern H, Wyatt TA, Sisson JH, Pavlik JA, Miiluniemi M, Fleming MD, Lee L (2011) Loss of SPEF2 function in mice results in spermatogenesis defects and primary ciliary dyskinesia. Biol Reprod 85(4):690–701. https://doi.org/10.1095/biolreprod.111.091132(biolreprod.111.091132[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lehti MS, Zhang FP, Kotaja N, Sironen A (2017) SPEF2 functions in microtubule-mediated transport in elongating spermatids to ensure proper male germ cell differentiation. Development 144(14):2683–2693. https://doi.org/10.1242/dev.152108

    Article  CAS  PubMed  Google Scholar 

  129. Lehti MS, Henriksson H, Rummukainen P, Wang F, Uusitalo-Kylmala L, Kiviranta R, Heino TJ, Kotaja N, Sironen A (2018) Cilia-related protein SPEF2 regulates osteoblast differentiation. Sci Rep 8(1):859. https://doi.org/10.1038/s41598-018-19204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tu C, Nie H, Meng L, Wang W, Li H, Yuan S, Cheng D, He W, Liu G, Du J, Gong F, Lu G, Lin G, Zhang Q, Tan YQ (2020) Novel mutations in SPEF2 causing different defects between flagella and cilia bridge: the phenotypic link between MMAF and PCD. Hum Genet 139(2):257–271. https://doi.org/10.1007/s00439-020-02110-0

    Article  CAS  PubMed  Google Scholar 

  131. Cindric S, Dougherty GW, Olbrich H, Hjeij R, Loges NT, Amirav I, Philipsen MC, Marthin JK, Nielsen KG, Sutharsan S, Raidt J, Werner C, Pennekamp P, Dworniczak B, Omran H (2020) SPEF2- and HYDIN-mutant cilia lack the central pair-associated protein SPEF2, aiding primary ciliary dyskinesia diagnostics. Am J Respir Cell Mol Biol 62(3):382–396. https://doi.org/10.1165/rcmb.2019-0086OC

    Article  CAS  PubMed  Google Scholar 

  132. Liu W, Sha Y, Li Y, Mei L, Lin S, Huang X, Lu J, Ding L, Kong S, Lu Z (2019) Loss-of-function mutations in SPEF2 cause multiple morphological abnormalities of the sperm flagella (MMAF). J Med Genet 56(10):678–684. https://doi.org/10.1136/jmedgenet-2018-105952

    Article  CAS  PubMed  Google Scholar 

  133. DiPetrillo CG, Smith EF (2010) Pcdp1 is a central apparatus protein that binds Ca(2+)-calmodulin and regulates ciliary motility. J Cell Biol 189(3):601–612. https://doi.org/10.1083/jcb.200912009(jcb.200912009[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Lee L, Campagna DR, Pinkus JL, Mulhern H, Wyatt TA, Sisson JH, Pavlik JA, Pinkus GS, Fleming MD (2008) Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol Cell Biol 28(3):949–957. https://doi.org/10.1128/MCB.00354-07(MCB.00354-07[pii])

    Article  CAS  PubMed  Google Scholar 

  135. Bustamante-Marin XM, Shapiro A, Sears PR, Charng WL, Conrad DF, Leigh MW, Knowles MR, Ostrowski LE, Zariwala MA (2020) Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J Hum Genet 65(2):175–180. https://doi.org/10.1038/s10038-019-0686-1

    Article  CAS  PubMed  Google Scholar 

  136. McKenzie CW, Craige B, Kroeger TV, Finn R, Wyatt TA, Sisson JH, Pavlik JA, Strittmatter L, Hendricks GM, Witman GB, Lee L (2015) CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Mol Biol Cell 26(18):3140–3149. https://doi.org/10.1091/mbc.E15-02-0121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Merchant M, Evangelista M, Luoh SM, Frantz GD, Chalasani S, Carano RA, van Hoy M, Ramirez J, Ogasawara AK, McFarland LM, Filvaroff EH, French DM, de Sauvage FJ (2005) Loss of the serine/threonine kinase fused results in postnatal growth defects and lethality due to progressive hydrocephalus. Mol Cell Biol 25(16):7054–7068. https://doi.org/10.1128/MCB.25.16.7054-7068.2005(25/16/7054[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vogel P, Read RW, Hansen GM, Payne BJ, Small D, Sands AT, Zambrowicz BP (2012) Congenital hydrocephalus in genetically engineered mice. Vet Pathol 49(1):166–181. https://doi.org/10.1177/0300985811415708(0300985811415708[pii])

    Article  CAS  PubMed  Google Scholar 

  139. Wilson CW, Nguyen CT, Chen MH, Yang JH, Gacayan R, Huang J, Chen JN, Chuang PT (2009) Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature 459(7243):98–102. https://doi.org/10.1038/nature07883(nature07883[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen MH, Gao N, Kawakami T, Chuang PT (2005) Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol Cell Biol 25(16):7042–7053. https://doi.org/10.1128/MCB.25.16.7042-7053.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nozawa YI, Yao E, Lin C, Yang JH, Wilson CW, Gacayan R, Chuang PT (2013) Fused (Stk36) is a ciliary protein required for central pair assembly and motile cilia orientation in the mammalian oviduct. Dev Dyn 242(11):1307–1319. https://doi.org/10.1002/dvdy.24024

    Article  CAS  PubMed  Google Scholar 

  142. Edelbusch C, Cindric S, Dougherty GW, Loges NT, Olbrich H, Rivlin J, Wallmeier J, Pennekamp P, Amirav I, Omran H (2017) Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum Mutat 38(8):964–969. https://doi.org/10.1002/humu.23261

    Article  CAS  PubMed  Google Scholar 

  143. Kott E, Legendre M, Copin B, Papon JF, Dastot-Le Moal F, Montantin G, Duquesnoy P, Piterboth W, Amram D, Bassinet L, Beucher J, Beydon N, Deneuville E, Houdouin V, Journel H, Just J, Nathan N, Tamalet A, Collot N, Jeanson L, Le Gouez M, Vallette B, Vojtek AM, Epaud R, Coste A, Clement A, Housset B, Louis B, Escudier E, Amselem S (2013) Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am J Hum Genet 93(3):561–570. https://doi.org/10.1016/j.ajhg.2013.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Knowles MR, Ostrowski LE, Leigh MW, Sears PR, Davis SD, Wolf WE, Hazucha MJ, Carson JL, Olivier KN, Sagel SD, Rosenfeld M, Ferkol TW, Dell SD, Milla CE, Randell SH, Yin W, Sannuti A, Metjian HM, Noone PG, Noone PJ, Olson CA, Patrone MV, Dang H, Lee HS, Hurd TW, Gee HY, Otto EA, Halbritter J, Kohl S, Kircher M, Krischer J, Bamshad MJ, Nickerson DA, Hildebrandt F, Shendure J, Zariwala MA (2014) Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med 189(6):707–717. https://doi.org/10.1164/rccm.201311-2047OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Onoufriadis A, Shoemark A, Schmidts M, Patel M, Jimenez G, Liu H, Thomas B, Dixon M, Hirst RA, Rutman A, Burgoyne T, Williams C, Scully J, Bolard F, Lafitte JJ, Beales PL, Hogg C, Yang P, Chung EM, Emes RD, O’CallaghanBouvagnet CP, Mitchison HM (2014) Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects. Hum Mol Genet 23(13):3362–3374. https://doi.org/10.1093/hmg/ddu046(Uk10K)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yin W, Livraghi-Butrico A, Sears PR, Rogers TD, Burns KA, Grubb BR, Ostrowski LE (2019) Mice with a deletion of Rsph1 exhibit a low level of mucociliary clearance and develop a primary ciliary dyskinesia phenotype. Am J Respir Cell Mol Biol 61(3):312–321. https://doi.org/10.1165/rcmb.2017-0387OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, Parker KA, Ybot-Gonzalez P, Emes RD, Wilson SW, Wallis C, Johnson CA, Herrera RJ, Rutman A, Dixon M, Shoemark A, Bush A, Hogg C, Gardiner RM, Reish O, Greene ND, O’Callaghan C, Purton S, Chung EM, Mitchison HM (2009) Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet 84(2):197–209

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Burgoyne T, Lewis A, Dewar A, Luther P, Hogg C, Shoemark A, Dixon M (2014) Characterizing the ultrastructure of primary ciliary dyskinesia transposition defect using electron tomography. Cytoskelet (Hoboken) 71(5):294–301. https://doi.org/10.1002/cm.21171

    Article  CAS  Google Scholar 

  149. Shinohara K, Chen D, Nishida T, Misaki K, Yonemura S, Hamada H (2015) Absence of radial spokes in mouse node cilia is required for rotational movement but confers ultrastructural instability as a trade-off. Dev Cell 35(2):236–246. https://doi.org/10.1016/j.devcel.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  150. Yoke H, Ueno H, Narita A, Sakai T, Horiuchi K, Shingyoji C, Hamada H, Shinohara K (2020) Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia. PLoS Genet 16(3):e1008664. https://doi.org/10.1371/journal.pgen.1008664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Patel-King RS, Gorbatyuk O, Takebe S, King SM (2004) Flagellar radial spokes contain a Ca2+-stimulated nucleoside diphosphate kinase. Mol Biol Cell 15(8):3891–3902. https://doi.org/10.1091/mbc.E04-04-0352E04-04-0352([pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Cho EH, Huh HJ, Jeong I, Lee NY, Koh WJ, Park HC, Ki CS (2020) A nonsense variant in NME5 causes human primary ciliary dyskinesia with radial spoke defects. Clin Genet 98(1):64–68. https://doi.org/10.1111/cge.13742

    Article  CAS  PubMed  Google Scholar 

  153. Oji A, Noda T, Fujihara Y, Miyata H, Kim YJ, Muto M, Nozawa K, Matsumura T, Isotani A, Ikawa M (2016) CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Sci Rep 6:31666. https://doi.org/10.1038/srep31666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Guan J, Ekwurtzel E, Kvist U, Hultenby K, Yuan L (2010) DNAJB13 is a radial spoke protein of mouse ‘9+2’ axoneme. Reprod Domest Anim 45(6):992–996. https://doi.org/10.1111/j.1439-0531.2009.01473.x

    Article  CAS  PubMed  Google Scholar 

  155. El Khouri E, Thomas L, Jeanson L, Bequignon E, Vallette B, Duquesnoy P, Montantin G, Copin B, Dastot-Le Moal F, Blanchon S, Papon JF, Lores P, Yuan L, Collot N, Tissier S, Faucon C, Gacon G, Patrat C, Wolf JP, Dulioust E, Crestani B, Escudier E, Coste A, Legendre M, Toure A, Amselem S (2016) Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am J Hum Genet 99(2):489–500. https://doi.org/10.1016/j.ajhg.2016.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Beckers A, Adis C, Schuster-Gossler K, Tveriakhina L, Ott T, Fuhl F, Hegermann J, Boldt K, Serth K, Rachev E, Alten L, Kremmer E, Ueffing M, Blum M, Gossler A (2020) The FOXJ1 target Cfap206 is required for sperm motility, mucociliary clearance of the airways and brain development. Development 147:21. https://doi.org/10.1242/dev.188052

    Article  CAS  Google Scholar 

  157. Vasudevan KK, Song K, Alford LM, Sale WS, Dymek EE, Smith EF, Hennessey T, Joachimiak E, Urbanska P, Wloga D, Dentler W, Nicastro D, Gaertig J (2015) FAP206 is a microtubule-docking adapter for ciliary radial spoke 2 and dynein c. Mol Biol Cell 26(4):696–710. https://doi.org/10.1091/mbc.E14-11-1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D (2009) The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187(6):921–933. https://doi.org/10.1083/jcb.200908067(jcb.200908067[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D (2019) Ciliary proteins: filling the gaps. Recent advances in deciphering the protein composition of motile ciliary complexes. Cells 8:7. https://doi.org/10.3390/cells8070730

    Article  CAS  Google Scholar 

  160. Olbrich H, Cremers C, Loges NT, Werner C, Nielsen KG, Marthin JK, Philipsen M, Wallmeier J, Pennekamp P, Menchen T, Edelbusch C, Dougherty GW, Schwartz O, Thiele H, Altmuller J, Rommelmann F, Omran H (2015) Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex. Am J Hum Genet 97(4):546–554. https://doi.org/10.1016/j.ajhg.2015.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rupp G, Porter ME (2003) A subunit of the dynein regulatory complex in chlamydomonas is a homologue of a growth arrest-specific gene product. J Cell Biol 162(1):47–57. https://doi.org/10.1083/jcb.200303019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bower R, Tritschler D, Vanderwaal K, Perrone CA, Mueller J, Fox L, Sale WS, Porter ME (2013) The N-DRC forms a conserved biochemical complex that maintains outer doublet alignment and limits microtubule sliding in motile axonemes. Mol Biol Cell 24(8):1134–1152. https://doi.org/10.1091/mbc.E12-11-0801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lewis WR, Malarkey EB, Tritschler D, Bower R, Pasek RC, Porath JD, Birket SE, Saunier S, Antignac C, Knowles MR, Leigh MW, Zariwala MA, Challa AK, Kesterson RA, Rowe SM, Drummond IA, Parant JM, Hildebrandt F, Porter ME, Yoder BK, Berbari NF (2016) Mutation of growth arrest specific 8 reveals a role in motile cilia function and human disease. PLoS Genet 12(7):e1006220. https://doi.org/10.1371/journal.pgen.1006220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Awata J, Song K, Lin J, King SM, Sanderson MJ, Nicastro D, Witman GB (2015) DRC3 connects the N-DRC to dynein g to regulate flagellar waveform. Mol Biol Cell 26(15):2788–2800. https://doi.org/10.1091/mbc.E15-01-0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ishikawa H, Marshall WF (2017) Intraflagellar transport and ciliary dynamics. Cold Spring Harb Perspect Biol 9:3. https://doi.org/10.1101/cshperspect.a021998

    Article  CAS  Google Scholar 

  166. Blatt EN, Yan XH, Wuerffel MK, Hamilos DL, Brody SL (1999) Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am J Respir Cell Mol Biol 21(2):168–176

    CAS  PubMed  Google Scholar 

  167. Chen J, Knowles HJ, Hebert JL, Hackett BP (1998) Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J Clin Invest 102(6):1077–1082

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Brody SL, Yan XH, Wuerffel MK, Song SK, Shapiro SD (2000) Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol 23(1):45–51

    CAS  PubMed  Google Scholar 

  169. Jacquet BV, Salinas-Mondragon R, Liang H, Therit B, Buie JD, Dykstra M, Campbell K, Ostrowski LE, Brody SL, Ghashghaei HT (2009) FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136(23):4021–4031. https://doi.org/10.1242/dev.041129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. You Y, Huang T, Richer EJ, Schmidt JE, Zabner J, Borok Z, Brody SL (2004) Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 286(4):L650–657. https://doi.org/10.1152/ajplung.00170.2003

    Article  CAS  PubMed  Google Scholar 

  171. Gomperts BN, Gong-Cooper X, Hackett BP (2004) Foxj1 regulates basal body anchoring to the cytoskeleton of ciliated pulmonary epithelial cells. J Cell Sci 117(Pt 8):1329–1337

    CAS  PubMed  Google Scholar 

  172. Shawlot W, Vazquez-Chantada M, Wallingford JB, Finnell RH (2015) Rfx2 is required for spermatogenesis in the mouse. Genesis 53(9):604–611. https://doi.org/10.1002/dvg.22880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kistler WS, Baas D, Lemeille S, Paschaki M, Seguin-Estevez Q, Barras E, Ma W, Duteyrat JL, Morle L, Durand B, Reith W (2015) RFX2 Is a Major Transcriptional Regulator of Spermiogenesis. PLoS Genet 11(7):e1005368. https://doi.org/10.1371/journal.pgen.1005368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wu Y, Hu X, Li Z, Wang M, Li S, Wang X, Lin X, Liao S, Zhang Z, Feng X, Wang S, Cui X, Wang Y, Gao F, Hess RA, Han C (2016) Transcription factor RFX2 is a key regulator of mouse spermiogenesis. Sci Rep 6:20435. https://doi.org/10.1038/srep20435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bonnafe E, Touka M, AitLounis A, Baas D, Barras E, Ucla C, Moreau A, Flamant F, Dubruille R, Couble P, Collignon J, Durand B, Reith W (2004) The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol Cell Biol 24(10):4417–4427

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Baas D, Meiniel A, Benadiba C, Bonnafe E, Meiniel O, Reith W, Durand B (2006) A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 24(4):1020–1030

    CAS  PubMed  Google Scholar 

  177. El Zein L, Ait-Lounis A, Morle L, Thomas J, Chhin B, Spassky N, Reith W, Durand B (2009) RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci 122(Pt 17):3180–3189. https://doi.org/10.1242/jcs.048348

    Article  CAS  PubMed  Google Scholar 

  178. Xu P, Morrison JP, Foley JF, Stumpo DJ, Ward T, Zeldin DC, Blackshear PJ (2018) Conditional ablation of the RFX4 isoform 1 transcription factor: Allele dosage effects on brain phenotype. PLoS ONE 13(1):e0190561. https://doi.org/10.1371/journal.pone.0190561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ashique AM, Choe Y, Karlen M, May SR, Phamluong K, Solloway MJ, Ericson J, Peterson AS (2009) The Rfx4 transcription factor modulates Shh signaling by regional control of ciliogenesis. Sci Signal 2(95):ra70. https://doi.org/10.1126/scisignal.2000602

    Article  CAS  PubMed  Google Scholar 

  180. Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H, Dougherty GW, Raidt J, Werner C, Amirav I, Hevroni A, Abitbul R, Avital A, Soferman R, Wessels M, O'Callaghan C, Chung EM, Rutman A, Hirst RA, Moya E, Mitchison HM, Van Daele S, De Boeck K, Jorissen M, Kintner C, Cuppens H, Omran H (2014) MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 5:4418. https://doi.org/10.1038/ncomms5418

    Article  CAS  PubMed  Google Scholar 

  181. Lu H, Anujan P, Zhou F, Zhang Y, Chong YL, Bingle CD, Roy S (2019) Mcidas mutant mice reveal a two-step process for the specification and differentiation of multiciliated cells in mammals. Development 146:6. https://doi.org/10.1242/dev.172643

    Article  CAS  Google Scholar 

  182. Arbi M, Pefani DE, Kyrousi C, Lalioti ME, Kalogeropoulou A, Papanastasiou AD, Taraviras S, Lygerou Z (2016) GemC1 controls multiciliogenesis in the airway epithelium. EMBO Rep 17(3):400–413. https://doi.org/10.15252/embr.201540882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lalioti ME, Kaplani K, Lokka G, Georgomanolis T, Kyrousi C, Dong W, Dunbar A, Parlapani E, Damianidou E, Spassky N, Kahle KT, Papantonis A, Lygerou Z, Taraviras S (2019) GemC1 is a critical switch for neural stem cell generation in the postnatal brain. Glia 67(12):2360–2373. https://doi.org/10.1002/glia.23690

    Article  PubMed  Google Scholar 

  184. Terre B, Piergiovanni G, Segura-Bayona S, Gil-Gomez G, Youssef SA, Attolini CS, Wilsch-Brauninger M, Jung C, Rojas AM, Marjanovic M, Knobel PA, Palenzuela L, Lopez-Rovira T, Forrow S, Huttner WB, Valverde MA, de Bruin A, Costanzo V, Stracker TH (2016) GEMC1 is a critical regulator of multiciliated cell differentiation. EMBO J 35(9):942–960. https://doi.org/10.15252/embj.201592821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Terre B, Lewis M, Gil-Gomez G, Han Z, Lu H, Aguilera M, Prats N, Roy S, Zhao H, Stracker TH (2019) Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1- MCIDAS- or CCNO-deficient mice. Development 146:8. https://doi.org/10.1242/dev.162628

    Article  CAS  Google Scholar 

  186. Kyrousi C, Arbi M, Pilz GA, Pefani DE, Lalioti ME, Ninkovic J, Gotz M, Lygerou Z, Taraviras S (2015) Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development 142(21):3661–3674. https://doi.org/10.1242/dev.126342

    Article  CAS  PubMed  Google Scholar 

  187. Wallmeier J, Al-Mutairi DA, Chen CT, Loges NT, Pennekamp P, Menchen T, Ma L, Shamseldin HE, Olbrich H, Dougherty GW, Werner C, Alsabah BH, Kohler G, Jaspers M, Boon M, Griese M, Schmitt-Grohe S, Zimmermann T, Koerner-Rettberg C, Horak E, Kintner C, Alkuraya FS, Omran H (2014) Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Genet 46(6):646–651. https://doi.org/10.1038/ng.2961

    Article  CAS  PubMed  Google Scholar 

  188. Funk MC, Bera AN, Menchen T, Kuales G, Thriene K, Lienkamp SS, Dengjel J, Omran H, Frank M, Arnold SJ (2015) Cyclin O (Ccno) functions during deuterosome-mediated centriole amplification of multiciliated cells. EMBO J 34(8):1078–1089. https://doi.org/10.15252/embj.201490805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nunez-Olle M, Jung C, Terre B, Balsiger NA, Plata C, Roset R, Pardo-Pastor C, Garrido M, Rojas S, Alameda F, Lloreta J, Martin-Caballero J, Flores JM, Stracker TH, Valverde MA, Munoz FJ, Gil-Gomez G (2017) Constitutive cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget 8(59):99261–99273. https://doi.org/10.18632/oncotarget.21818

    Article  PubMed  PubMed Central  Google Scholar 

  190. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404(6773):99–103. https://doi.org/10.1038/35003607

    Article  CAS  PubMed  Google Scholar 

  191. Gonzalez-Cano L, Fuertes-Alvarez S, Robledinos-Anton N, Bizy A, Villena-Cortes A, Farinas I, Marques MM, Marin MC (2016) p73 is required for ependymal cell maturation and neurogenic SVZ cytoarchitecture. Dev Neurobiol 76(7):730–747. https://doi.org/10.1002/dneu.22356

    Article  CAS  PubMed  Google Scholar 

  192. Nemajerova A, Kramer D, Siller SS, Herr C, Shomroni O, Pena T, Gallinas Suazo C, Glaser K, Wildung M, Steffen H, Sriraman A, Oberle F, Wienken M, Hennion M, Vidal R, Royen B, Alevra M, Schild D, Bals R, Donitz J, Riedel D, Bonn S, Takemaru K, Moll UM, Lize M (2016) TAp73 is a central transcriptional regulator of airway multiciliogenesis. Genes Dev 30(11):1300–1312. https://doi.org/10.1101/gad.279836.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Marshall CB, Mays DJ, Beeler JS, Rosenbluth JM, Boyd KL, Santos Guasch GL, Shaver TM, Tang LJ, Liu Q, Shyr Y, Venters BJ, Magnuson MA, Pietenpol JA (2016) p73 is required for multiciliogenesis and regulates the Foxj1-associated gene network. Cell Rep 14(10):2289–2300. https://doi.org/10.1016/j.celrep.2016.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fujitani M, Sato R, Yamashita T (2017) Loss of p73 in ependymal cells during the perinatal period leads to aqueductal stenosis. Sci Rep 7(1):12007. https://doi.org/10.1038/s41598-017-12105-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jiang Z, Zhou J, Qin X, Zheng H, Gao B, Liu X, Jin G, Zhou Z (2020) MT1-MMP deficiency leads to defective ependymal cell maturation, impaired ciliogenesis, and hydrocephalus. JCI Insight 5:9. https://doi.org/10.1172/jci.insight.132782

    Article  Google Scholar 

  196. Wang X, Zhou Y, Wang J, Tseng IC, Huang T, Zhao Y, Zheng Q, Gao Y, Luo H, Zhang X, Bu G, Hong W, Xu H (2016) SNX27 deletion causes hydrocephalus by impairing ependymal cell differentiation and ciliogenesis. J Neurosci 36(50):12586–12597. https://doi.org/10.1523/JNEUROSCI.1620-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Seaman MN (2012) The retromer complex: endosomal protein recycling and beyond. J Cell Sci 125(Pt 20):4693–4702. https://doi.org/10.1242/jcs.103440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brucke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175. https://doi.org/10.1016/j.ajhg.2011.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wu KY, Tang FL, Lee D, Zhao Y, Song H, Zhu XJ, Mei L, Xiong WC (2020) Ependymal Vps35 promotes ependymal cell differentiation and survival, suppresses microglial activation, and prevents neonatal hydrocephalus. J Neurosci 40(19):3862–3879. https://doi.org/10.1523/JNEUROSCI.1520-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu M, Guan Z, Shen Q, Lalor P, Fitzgerald U, O'Brien T, Dockery P, Shen S (2016) Ulk4 is essential for ciliogenesis and CSF flow. J Neurosci 36(29):7589–7600. https://doi.org/10.1523/JNEUROSCI.0621-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Nakayama K, Katoh Y (2020) Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 55(2):179–196. https://doi.org/10.1080/10409238.2020.1768206

    Article  CAS  PubMed  Google Scholar 

  202. Prevo B, Scholey JM, Peterman EJG (2017) Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 284(18):2905–2931. https://doi.org/10.1111/febs.14068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Siller SS, Sharma H, Li S, Yang J, Zhang Y, Holtzman MJ, Winuthayanon W, Colognato H, Holdener BC, Li FQ, Takemaru KI (2017) Conditional knockout mice for the distal appendage protein CEP164 reveal its essential roles in airway multiciliated cell differentiation. PLoS Genet 13(12):e1007128. https://doi.org/10.1371/journal.pgen.1007128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Burke MC, Li FQ, Cyge B, Arashiro T, Brechbuhl HM, Chen X, Siller SS, Weiss MA, O'Connell CB, Love D, Westlake CJ, Reynolds SD, Kuriyama R, Takemaru K (2014) Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation. J Cell Biol 207(1):123–137. https://doi.org/10.1083/jcb.201406140

    Article  PubMed  PubMed Central  Google Scholar 

  205. Love D, Li FQ, Burke MC, Cyge B, Ohmitsu M, Cabello J, Larson JE, Brody SL, Cohen JC, Takemaru K (2010) Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/beta-catenin antagonist Chibby. PLoS ONE 5(10):e13600. https://doi.org/10.1371/journal.pone.0013600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Siller SS, Burke MC, Li FQ, Takemaru K (2015) Chibby functions to preserve normal ciliary morphology through the regulation of intraflagellar transport in airway ciliated cells. Cell Cycle 14(19):3163–3172. https://doi.org/10.1080/15384101.2015.1080396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Voronina VA, Takemaru K, Treuting P, Love D, Grubb BR, Hajjar AM, Adams A, Li FQ, Moon RT (2009) Inactivation of chibby affects function of motile airway cilia. J Cell Biol 185(2):225–233

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Hong DH, Pawlyk BS, Shang J, Sandberg MA, Berson EL, Li T (2000) A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci USA 97(7):3649–3654. https://doi.org/10.1073/pnas.060037497

    Article  CAS  PubMed  Google Scholar 

  209. Hong DH, Pawlyk B, Sokolov M, Strissel KJ, Yang J, Tulloch B, Wright AF, Arshavsky VY, Li T (2003) RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 44(6):2413–2421

    PubMed  Google Scholar 

  210. Brunner S, Colman D, Travis AJ, Luhmann UF, Shi W, Feil S, Imsand C, Nelson J, Grimm C, Rulicke T, Fundele R, Neidhardt J, Berger W (2008) Overexpression of RPGR leads to male infertility in mice due to defects in flagellar assembly. Biol Reprod 79(4):608–617

    CAS  PubMed  Google Scholar 

  211. Bukowy-Bieryllo Z, Zietkiewicz E, Loges NT, Wittmer M, Geremek M, Olbrich H, Fliegauf M, Voelkel K, Rutkiewicz E, Rutland J, Morgan L, Pogorzelski A, Martin J, Haan E, Berger W, Omran H, Witt M (2013) RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr Pulmonol 48(4):352–363. https://doi.org/10.1002/ppul.22632

    Article  PubMed  Google Scholar 

  212. Taulman PD, Haycraft CJ, Balkovetz DF, Yoder BK (2001) Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia. Mol Biol Cell 12(3):589–599

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD, Schwiebert EM, Yoder BK (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132(23):5329–5339

    CAS  PubMed  Google Scholar 

  214. Gilley SK, Stenbit AE, Pasek RC, Sas KM, Steele SL, Amria M, Bunni MA, Estell KP, Schwiebert LM, Flume P, Gooz M, Haycraft CJ, Yoder BK, Miller C, Pavlik JA, Turner GA, Sisson JH, Bell PD (2014) Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways. Am J Physiol Lung Cell Mol Physiol 306(2):L162–169. https://doi.org/10.1152/ajplung.00095.2013

    Article  CAS  PubMed  Google Scholar 

  215. Ahmed NT, Gao C, Lucker BF, Cole DG, Mitchell DR (2008) ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol 183(2):313–322. https://doi.org/10.1083/jcb.200802025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Taschner M, Mourao A, Awasthi M, Basquin J, Lorentzen E (2017) Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J Biol Chem 292(18):7462–7473. https://doi.org/10.1074/jbc.M117.780155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yang Y, Ran J, Liu M, Li D, Li Y, Shi X, Meng D, Pan J, Ou G, Aneja R, Sun SC, Zhou J (2014) CYLD mediates ciliogenesis in multiple organs by deubiquitinating Cep70 and inactivating HDAC6. Cell Res 24(11):1342–1353. https://doi.org/10.1038/cr.2014.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Weidemann M, Schuster-Gossler K, Stauber M, Wrede C, Hegermann J, Ott T, Boldt K, Beyer T, Serth K, Kremmer E, Blum M, Ueffing M, Gossler A (2016) CFAP157 is a murine downstream effector of FOXJ1 that is specifically required for flagellum morphogenesis and sperm motility. Development 143(24):4736–4748. https://doi.org/10.1242/dev.139626

    Article  CAS  PubMed  Google Scholar 

  219. Schweizer S, Hoyer-Fender S (2009) Mouse Odf2 localizes to centrosomes and basal bodies in adult tissues and to the photoreceptor primary cilium. Cell Tissue Res 338(2):295–301. https://doi.org/10.1007/s00441-009-0861-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kunimoto K, Yamazaki Y, Nishida T, Shinohara K, Ishikawa H, Hasegawa T, Okanoue T, Hamada H, Noda T, Tamura A, Tsukita S (2012) Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 148(1–2):189–200. https://doi.org/10.1016/j.cell.2011.10.052(S0092-8674(11)01366-3[pii])

    Article  CAS  PubMed  Google Scholar 

  221. Tarnasky H, Cheng M, Ou Y, Thundathil JC, Oko R, van der Hoorn FA (2010) Gene trap mutation of murine outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism. BMC Dev Biol 10:67. https://doi.org/10.1186/1471-213X-10-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Appelbe OK, Bollman B, Attarwala A, Triebes LA, Muniz-Talavera H, Curry DJ, Schmidt JV (2013) Disruption of the mouse Jhy gene causes abnormal ciliary microtubule patterning and juvenile hydrocephalus. Dev Biol 382(1):172–185. https://doi.org/10.1016/j.ydbio.2013.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Muniz-Talavera H, Schmidt JV (2017) The mouse Jhy gene regulates ependymal cell differentiation and ciliogenesis. PLoS ONE 12(12):e0184957. https://doi.org/10.1371/journal.pone.0184957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Treat AC, Wheeler DS, Stolz DB, Tsang M, Friedman PA, Romero G (2016) The PDZ Protein Na+/H+ exchanger regulatory factor-1 (NHERF1) regulates planar cell polarity and motile cilia organization. PLoS ONE 11(4):e0153144. https://doi.org/10.1371/journal.pone.0153144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Song R, Walentek P, Sponer N, Klimke A, Lee JS, Dixon G, Harland R, Wan Y, Lishko P, Lize M, Kessel M, He L (2014) miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 510(7503):115–120. https://doi.org/10.1038/nature13413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Spektor A, Tsang WY, Khoo D, Dynlacht BD (2007) Cep97 and CP110 suppress a cilia assembly program. Cell 130(4):678–690. https://doi.org/10.1016/j.cell.2007.06.027

    Article  CAS  PubMed  Google Scholar 

  227. Wloga D, Joachimiak E, Louka P, Gaertig J (2017) Posttranslational modifications of tubulin and cilia. Cold Spring Harb Perspect Biol 9:6. https://doi.org/10.1101/cshperspect.a028159

    Article  CAS  Google Scholar 

  228. Takaki E, Fujimoto M, Sugahara K, Nakahari T, Yonemura S, Tanaka Y, Hayashida N, Inouye S, Takemoto T, Yamashita H, Nakai A (2006) Maintenance of olfactory neurogenesis requires HSF1, a major heat shock transcription factor in mice. J Biol Chem 281(8):4931–4937. https://doi.org/10.1074/jbc.M506911200(M506911200[pii])

    Article  CAS  PubMed  Google Scholar 

  229. Takaki E, Fujimoto M, Nakahari T, Yonemura S, Miyata Y, Hayashida N, Yamamoto K, Vallee RB, Mikuriya T, Sugahara K, Yamashita H, Inouye S, Nakai A (2007) Heat shock transcription factor 1 is required for maintenance of ciliary beating in mice. J Biol Chem 282(51):37285–37292

    CAS  PubMed  Google Scholar 

  230. Fabczak H, Osinka A (2019) Role of the novel Hsp90 co-chaperones in dynein arms’ preassembly. Int J Mol Sci 20:24. https://doi.org/10.3390/ijms20246174

    Article  CAS  Google Scholar 

  231. Amos LA (2008) The tektin family of microtubule-stabilizing proteins. Genome Biol 9(7):229. https://doi.org/10.1186/gb-2008-9-7-229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, Maekawa M, Nishimune Y (2004) Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol 24(18):7958–7964

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Vogel P, Hansen G, Fontenot G, Read R (2010) Tubulin tyrosine ligase-like 1 deficiency results in chronic rhinosinusitis and abnormal development of spermatid flagella in mice. Vet Pathol 47(4):703–712. https://doi.org/10.1177/0300985810363485(0300985810363485[pii])

    Article  CAS  PubMed  Google Scholar 

  234. Konno A, Setou M, Ikegami K (2012) Ciliary and flagellar structure and function–their regulations by posttranslational modifications of axonemal tubulin. Int Rev Cell Mol Biol 294:133–170. https://doi.org/10.1016/B978-0-12-394305-7.00003-3

    Article  CAS  PubMed  Google Scholar 

  235. Ikegami K, Sato S, Nakamura K, Ostrowski LE, Setou M (2010) Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc Natl Acad Sci USA 107(23):10490–10495. https://doi.org/10.1073/pnas.1002128107(1002128107[pii])

    Article  PubMed  Google Scholar 

  236. Wang D, Nitta R, Morikawa M, Yajima H, Inoue S, Shigematsu H, Kikkawa M, Hirokawa N (2016) Motility and microtubule depolymerization mechanisms of the Kinesin-8 motor, KIF19A. Elife. https://doi.org/10.7554/eLife.18101

    Article  PubMed  PubMed Central  Google Scholar 

  237. Niwa S, Nakajima K, Miki H, Minato Y, Wang D, Hirokawa N (2012) KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell 23(6):1167–1175. https://doi.org/10.1016/j.devcel.2012.10.016(S1534-5807(12)00479-0[pii])

    Article  CAS  PubMed  Google Scholar 

  238. Robinson AM, Takahashi S, Brotslaw EJ, Ahmad A, Ferrer E, Procissi D, Richter CP, Cheatham MA, Mitchell BJ, Zheng J (2020) CAMSAP3 facilitates basal body polarity and the formation of the central pair of microtubules in motile cilia. Proc Natl Acad Sci USA 117(24):13571–13579. https://doi.org/10.1073/pnas.1907335117

    Article  CAS  PubMed  Google Scholar 

  239. Pongrakhananon V, Saito H, Hiver S, Abe T, Shioi G, Meng W, Takeichi M (2018) CAMSAP3 maintains neuronal polarity through regulation of microtubule stability. Proc Natl Acad Sci USA 115(39):9750–9755. https://doi.org/10.1073/pnas.1803875115

    Article  CAS  PubMed  Google Scholar 

  240. Toya M, Kobayashi S, Kawasaki M, Shioi G, Kaneko M, Ishiuchi T, Misaki K, Meng W, Takeichi M (2016) CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells. Proc Natl Acad Sci USA 113(2):332–337. https://doi.org/10.1073/pnas.1520638113

    Article  CAS  PubMed  Google Scholar 

  241. Clare DK, Magescas J, Piolot T, Dumoux M, Vesque C, Pichard E, Dang T, Duvauchelle B, Poirier F, Delacour D (2014) Basal foot MTOC organizes pillar MTs required for coordination of beating cilia. Nat Commun 5:4888. https://doi.org/10.1038/ncomms5888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Comte I, Kim Y, Young CC, van der Harg JM, Hockberger P, Bolam PJ, Poirier F, Szele FG (2011) Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J Cell Sci 124(Pt 14):2438–2447. https://doi.org/10.1242/jcs.079954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Bustamante-Marin XM, Yin WN, Sears PR, Werner ME, Brotslaw EJ, Mitchell BJ, Jania CM, Zeman KL, Rogers TD, Herring LE, Refabert L, Thomas L, Amselem S, Escudier E, Legendre M, Grubb BR, Knowles MR, Zariwala MA, Ostrowski LE (2019) Lack of GAS2L2 Causes PCD by impairing cilia orientation and mucociliary clearance. Am J Hum Genet 104(2):229–245. https://doi.org/10.1016/j.ajhg.2018.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Stroud MJ, Nazgiewicz A, McKenzie EA, Wang Y, Kammerer RA, Ballestrem C (2014) GAS2-like proteins mediate communication between microtubules and actin through interactions with end-binding proteins. J Cell Sci 127(Pt 12):2672–2682. https://doi.org/10.1242/jcs.140558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Bonser LR, Schroeder BW, Ostrin LA, Baumlin N, Olson JL, Salathe M, Erle DJ (2015) The endoplasmic reticulum resident protein AGR3. Required for regulation of ciliary beat frequency in the airway. Am J Respir Cell Mol Biol 53(4):536–543. https://doi.org/10.1165/rcmb.2014-0318OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Fernandez-Gonzalez A, Kourembanas S, Wyatt TA, Mitsialis SA (2009) Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype. Am J Respir Cell Mol Biol 40(3):305–313

    CAS  PubMed  Google Scholar 

  247. Lores P, Coutton C, El Khouri E, Stouvenel L, Givelet M, Thomas L, Rode B, Schmitt A, Louis B, Sakheli Z, Chaudhry M, Fernandez-Gonzales A, Mitsialis A, Dacheux D, Wolf JP, Papon JF, Gacon G, Escudier E, Arnoult C, Bonhivers M, Savinov SN, Amselem S, Ray PF, Dulioust E, Toure A (2018) Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet 27(7):1196–1211. https://doi.org/10.1093/hmg/ddy034

    Article  CAS  PubMed  Google Scholar 

  248. Mata M, Lluch-Estelles J, Armengot M, Sarrion I, Carda C, Cortijo J (2012) New adenylate kinase 7 (AK7) mutation in primary ciliary dyskinesia. Am J Rhinol Allergy 26(4):260–264. https://doi.org/10.2500/ajra.2012.26.3784

    Article  PubMed  Google Scholar 

  249. Moye AR, Singh R, Kimler VA, Dilan TL, Munezero D, Saravanan T, Goldberg AFX, Ramamurthy V (2018) ARL2BP, a protein linked to retinitis pigmentosa, is needed for normal photoreceptor cilia doublets and outer segment structure. Mol Biol Cell 29(13):1590–1598. https://doi.org/10.1091/mbc.E18-01-0040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Moye AR, Bedoni N, Cunningham JG, Sanzhaeva U, Tucker ES, Mathers P, Peter VG, Quinodoz M, Paris LP, Coutinho-Santos L, Camacho P, Purcell MG, Winkelmann AC, Foster JA, Pugacheva EN, Rivolta C, Ramamurthy V (2019) Mutations in ARL2BP, a protein required for ciliary microtubule structure, cause syndromic male infertility in humans and mice. PLoS Genet 15(8):e1008315. https://doi.org/10.1371/journal.pgen.1008315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Davidson AE, Schwarz N, Zelinger L, Stern-Schneider G, Shoemark A, Spitzbarth B, Gross M, Laxer U, Sosna J, Sergouniotis PI, Waseem NH, Wilson R, Kahn RA, Plagnol V, Wolfrum U, Banin E, Hardcastle AJ, Cheetham ME, Sharon D, Webster AR (2013) Mutations in ARL2BP, encoding ADP-ribosylation-factor-like 2 binding protein, cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet 93(2):321–329. https://doi.org/10.1016/j.ajhg.2013.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Vogel P, Read R, Hansen GM, Freay LC, Zambrowicz BP, Sands AT (2010) Situs inversus in Dpcd/Poll-/-, Nme7-/-, and Pkd1l1-/- mice. Vet Pathol 47(1):120–131. https://doi.org/10.1177/0300985809353553(47/1/120[pii])

    Article  CAS  PubMed  Google Scholar 

  253. Reish O, Aspit L, Zouella A, Roth Y, Polak-Charcon S, Baboushkin T, Benyamini L, Scheetz TE, Mussaffi H, Sheffield VC, Parvari R (2016) A Homozygous Nme7 mutation is associated with situs inversus totalis. Hum Mutat 37(8):727–731. https://doi.org/10.1002/humu.22998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Wilson GR, Tan JT, Brody KM, Taylor JM, Delatycki MB, Lockhart PJ (2009) Expression and localization of the Parkin co-regulated gene in mouse CNS suggests a role in ependymal cilia function. Neurosci Lett 460(1):97–101. https://doi.org/10.1016/j.neulet.2009.05.043

    Article  CAS  PubMed  Google Scholar 

  255. Dymek EE, Lin J, Fu G, Porter ME, Nicastro D, Smith EF (2019) PACRG and FAP20 form the inner junction of axonemal doublet microtubules and regulate ciliary motility. Mol Biol Cell 30(15):1805–1816. https://doi.org/10.1091/mbc.E19-01-0063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. West AB, Lockhart PJ, O'Farell C, Farrer MJ (2003) Identification of a novel gene linked to parkin via a bi-directional promoter. J Mol Biol 326(1):11–19. https://doi.org/10.1016/s0022-2836(02)01376-1

    Article  CAS  PubMed  Google Scholar 

  257. Wilson GR, Wang HX, Egan GF, Robinson PJ, Delatycki MB, O'Bryan MK, Lockhart PJ (2010) Deletion of the parkin co-regulated gene causes defects in ependymal ciliary motility and hydrocephalus in the quakingviable mutant mouse. Hum Mol Genet 19(8):1593–1602. https://doi.org/10.1093/hmg/ddq031(ddq031[pii])

    Article  CAS  PubMed  Google Scholar 

  258. Li W, Tang W, Teves ME, Zhang Z, Zhang L, Li H, Archer KJ, Peterson DL, Williams DC Jr, Strauss JF 3rd, Zhang Z (2015) A MEIG1/PACRG complex in the manchette is essential for building the sperm flagella. Development 142(5):921–930. https://doi.org/10.1242/dev.119834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Sasaki K, Shiba K, Nakamura A, Kawano N, Satouh Y, Yamaguchi H, Morikawa M, Shibata D, Yanase R, Jokura K, Nomura M, Miyado M, Takada S, Ueno H, Nonaka S, Baba T, Ikawa M, Kikkawa M, Miyado K, Inaba K (2019) Calaxin is required for cilia-driven determination of vertebrate laterality. Commun Biol 2:226. https://doi.org/10.1038/s42003-019-0462-y

    Article  PubMed  PubMed Central  Google Scholar 

  260. Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G 3rd, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF (2017) Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways. Dev Cell 43(6):744–762. https://doi.org/10.1016/j.devcel.2017.11.014(e711)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Tang S, Wang X, Li W, Yang X, Li Z, Liu W, Li C, Zhu Z, Wang L, Wang J, Zhang L, Sun X, Zhi E, Wang H, Li H, Jin L, Luo Y, Wang J, Yang S, Zhang F (2017) Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 100(6):854–864. https://doi.org/10.1016/j.ajhg.2017.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Coutton C, Vargas AS, Amiri-Yekta A, Kherraf ZE, Ben Mustapha SF, Le Tanno P, Wambergue-Legrand C, Karaouzene T, Martinez G, Crouzy S, Daneshipour A, Hosseini SH, Mitchell V, Halouani L, Marrakchi O, Makni M, Latrous H, Kharouf M, Deleuze JF, Boland A, Hennebicq S, Satre V, Jouk PS, Thierry-Mieg N, Conne B, Dacheux D, Landrein N, Schmitt A, Stouvenel L, Lores P, El Khouri E, Bottari SP, Faure J, Wolf JP, Pernet-Gallay K, Escoffier J, Gourabi H, Robinson DR, Nef S, Dulioust E, Zouari R, Bonhivers M, Toure A, Arnoult C, Ray PF (2018) Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun 9(1):686. https://doi.org/10.1038/s41467-017-02792-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Rachev E, Schuster-Gossler K, Fuhl F, Ott T, Tveriakhina L, Beckers A, Hegermann J, Boldt K, Mai M, Kremmer E, Ueffing M, Blum M, Gossler A (2020) CFAP43 modulates ciliary beating in mouse and Xenopus. Dev Biol 459(2):109–125. https://doi.org/10.1016/j.ydbio.2019.12.010

    Article  CAS  PubMed  Google Scholar 

  264. Morimoto Y, Yoshida S, Kinoshita A, Satoh C, Mishima H, Yamaguchi N, Matsuda K, Sakaguchi M, Tanaka T, Komohara Y, Imamura A, Ozawa H, Nakashima M, Kurotaki N, Kishino T, Yoshiura KI, Ono S (2019) Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology 92(20):e2364–e2374. https://doi.org/10.1212/WNL.0000000000007505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Kobayashi Y, Watanabe M, Okada Y, Sawa H, Takai H, Nakanishi M, Kawase Y, Suzuki H, Nagashima K, Ikeda K, Motoyama N (2002) Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Mol Cell Biol 22(8):2769–2776

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Zariwala M, O'Neal WK, Noone PG, Leigh MW, Knowles MR, Ostrowski LE (2004) Investigation of the possible role of a novel gene, DPCD, in primary ciliary dyskinesia. Am J Respir Cell Mol Biol 30(4):428–434. https://doi.org/10.1165/rcmb.2003-0338RC2003-0338RC([pii])

    Article  CAS  PubMed  Google Scholar 

  267. Bertocci B, De Smet A, Flatter E, Dahan A, Bories JC, Landreau C, Weill JC, Reynaud CA (2002) Cutting edge: DNA polymerases mu and lambda are dispensable for Ig gene hypermutation. J Immunol 168(8):3702–3706

    CAS  PubMed  Google Scholar 

  268. Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh NS, Yang T, Wu S, Chen S, Fox MH, Gurnett C, Montine T, Bird T, Shaffer LG, Rosenfeld JA, McConnell J, Madan-Khetarpal S, Berry-Kravis E, Griesbach H, Saneto RP, Scott MP, Antic D, Reed J, Boland R, Ehaideb SN, El-Shanti H, Mahajan VB, Ferguson PJ, Axelrod JD, Lehesjoki AE, Fritzsch B, Slusarski DC, Wemmie J, Ueno N, Bassuk AG (2011) Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet 88(2):138–149. https://doi.org/10.1016/j.ajhg.2010.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Tao H, Inoue K, Kiyonari H, Bassuk AG, Axelrod JD, Sasaki H, Aizawa S, Ueno N (2012) Nuclear localization of Prickle2 is required to establish cell polarity during early mouse embryogenesis. Dev Biol 364(2):138–148. https://doi.org/10.1016/j.ydbio.2012.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Sowers LP, Yin T, Mahajan VB, Bassuk AG (2014) Defective motile cilia in Prickle2-deficient mice. J Neurogenet 28(1–2):146–152. https://doi.org/10.3109/01677063.2014.885966

    Article  CAS  PubMed  Google Scholar 

  271. Zhang Y, Huang G, Shornick LP, Roswit WT, Shipley JM, Brody SL, Holtzman MJ (2007) A transgenic FOXJ1-Cre system for gene inactivation in ciliated epithelial cells. Am J Respir Cell Mol Biol 36(5):515–519. https://doi.org/10.1165/rcmb.2006-0475RC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Rawlins EL, Ostrowski LE, Randell SH, Hogan BL (2007) Lung development and repair: contribution of the ciliated lineage. Proc Natl Acad Sci USA 104(2):410–417. https://doi.org/10.1073/pnas.0610770104

    Article  CAS  PubMed  Google Scholar 

  273. Muthusamy N, Vijayakumar A, Cheng G Jr, Ghashghaei HT (2014) A knock-in Foxj1(CreERT2:GFP) mouse for recombination in epithelial cells with motile cilia. Genesis 52(4):350–358. https://doi.org/10.1002/dvg.22753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Ostrowski LE, Hutchins JR, Zakel K, O'Neal WK (2003) Targeting expression of a transgene to the airway surface epithelium using a ciliated cell-specific promoter. Mol Ther 8(4):637–645. https://doi.org/10.1016/s1525-0016(03)00221-1

    Article  CAS  PubMed  Google Scholar 

  275. Li X, Floriddia EM, Toskas K, Chalfouh C, Honore A, Aumont A, Vallieres N, Lacroix S, Fernandes KJL, Guerout N, Barnabe-Heider F (2018) FoxJ1 regulates spinal cord development and is required for the maintenance of spinal cord stem cell potential. Exp Cell Res 368(1):84–100. https://doi.org/10.1016/j.yexcr.2018.04.017

    Article  CAS  PubMed  Google Scholar 

  276. Rawlins EL, Hogan BL (2008) Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol 295(1):L231–234. https://doi.org/10.1152/ajplung.90209.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. O'Connor AK, Malarkey EB, Berbari NF, Croyle MJ, Haycraft CJ, Bell PD, Hohenstein P, Kesterson RA, Yoder BK (2013) An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue. Cilia 2(1):8. https://doi.org/10.1186/2046-2530-2-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Schmitz F, Burtscher I, Stauber M, Gossler A, Lickert H (2017) A novel Cre-inducible knock-in ARL13B-tRFP fusion cilium reporter. Genesis 55:11. https://doi.org/10.1002/dvg.23073

    Article  CAS  Google Scholar 

  279. You Y, Richer EJ, Huang T, Brody SL (2002) Growth and differentiation of mouse tracheal epithelial cells: selection of a proliferative population. Am J Physiol Lung Cell Mol Physiol 283(6):L1315–1321. https://doi.org/10.1152/ajplung.00169.2002

    Article  CAS  PubMed  Google Scholar 

  280. Stubbs JL, Vladar EK, Axelrod JD, Kintner C (2012) Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat Cell Biol 14(2):140–147. https://doi.org/10.1038/ncb2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Vladar EK, Stearns T (2007) Molecular characterization of centriole assembly in ciliated epithelial cells. J Cell Biol 178(1):31–42. https://doi.org/10.1083/jcb.200703064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Vladar EK, Nayak JV, Milla CE, Axelrod JD (2016) Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation. JCI Insight 1:13. https://doi.org/10.1172/jci.insight.88027

    Article  Google Scholar 

  283. Vladar EK, Stratton MB, Saal ML, Salazar-De Simone G, Wang X, Wolgemuth D, Stearns T, Axelrod JD (2018) Cyclin-dependent kinase control of motile ciliogenesis. Elife. https://doi.org/10.7554/eLife.36375

    Article  PubMed  PubMed Central  Google Scholar 

  284. Zhu L, Liu H, Chen Y, Yan, X, Zhu X (2019) Rsph9 is critical for ciliary radial spoke assembly and central pair microtubule stability. Biol Cell 111(2):29–38. https://doi.org/10.1111/boc.201800060

    Article  CAS  PubMed  Google Scholar 

  285. Bosch Grau M, Gonzalez Curto G, Rocha C, Magiera MM, Marques Sousa P, Giordano T, Spassky N, Janke C (2013) Tubulin glycylases and glutamylases have distinct functions in stabilization and motility of ependymal cilia. J Cell Biol 202(3):441–451. https://doi.org/10.1083/jcb.201305041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Shamoto N, Narita K, Kubo T, Oda T, Takeda S (2018) CFAP70 is a novel axoneme-binding protein that localizes at the base of the outer dynein arm and regulates ciliary motility. Cells 7:9. https://doi.org/10.3390/cells7090124

    Article  CAS  Google Scholar 

  287. Zhang Y, Chen Y, Zheng J, Wang J, Duan S, Zhang W, Yan X, Zhu X (2019) Vertebrate dynein-f depends on Wdr78 for axonemal localization and is essential for ciliary beat. J Mol Cell Biol 11(5):383–394. https://doi.org/10.1093/jmcb/mjy043

    Article  CAS  PubMed  Google Scholar 

  288. Zheng J, Liu H, Zhu L, Chen Y, Zhao H, Zhang W, Li F, Xie L, Yan X, Zhu X (2019) Microtubule-bundling protein Spef1 enables mammalian ciliary central apparatus formation. J Mol Cell Biol 11(1):67–77. https://doi.org/10.1093/jmcb/mjy014

    Article  CAS  PubMed  Google Scholar 

  289. Nishimura Y, Kurisaki A, Nakanishi M, Ohnuma K, Ninomiya N, Komazaki S, Ishiura S, Asashima M (2010) Inhibitory smad proteins promote the differentiation of mouse embryonic stem cells into ependymal-like ciliated cells. Biochem Biophys Res Commun 401(1):1–6. https://doi.org/10.1016/j.bbrc.2010.08.099(S0006-291X(10)01620-7[pii])

    Article  CAS  PubMed  Google Scholar 

  290. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, Wada I, Omori K (2016) Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res 364(2):319–330. https://doi.org/10.1007/s00441-015-2304-7

    Article  CAS  PubMed  Google Scholar 

  291. Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136(13):2297–2307. https://doi.org/10.1242/dev.034884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Genzen JR, Yang D, Ravid K, Bordey A (2009) Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Res 6:15. https://doi.org/10.1186/1743-8454-6-15(1743-8454-6-15[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Allen-Gipson DS, Blackburn MR, Schneider DJ, Zhang H, Bluitt DL, Jarrell JC, Yanov D, Sisson JH, Wyatt TA (2011) Adenosine activation of A(2B) receptor(s) is essential for stimulated epithelial ciliary motility and clearance. Am J Physiol Lung Cell Mol Physiol 301(2):L171–180. https://doi.org/10.1152/ajplung.00203.2010(ajplung.00203.2010[pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Bylander A, Lind K, Goksor M, Billig H, Larsson DG (2013) The classical progesterone receptor mediates the rapid reduction of fallopian tube ciliary beat frequency by progesterone. Reprod Biol Endocrinol 11:33. https://doi.org/10.1186/1477-7827-11-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Herawati E, Taniguchi D, Kanoh H, Tateishi K, Ishihara S, Tsukita S (2016) Multiciliated cell basal bodies align in stereotypical patterns coordinated by the apical cytoskeleton. J Cell Biol 214(5):571–586. https://doi.org/10.1083/jcb.201601023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Alpizar YA, Boonen B, Sanchez A, Jung C, Lopez-Requena A, Naert R, Steelant B, Luyts K, Plata C, De Vooght V, Vanoirbeek JAJ, Meseguer VM, Voets T, Alvarez JL, Hellings PW, Hoet PHM, Nemery B, Valverde MA, Talavera K (2017) TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat Commun 8(1):1059. https://doi.org/10.1038/s41467-017-01201-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Abdi K, Lai CH, Paez-Gonzalez P, Lay M, Pyun J, Kuo CT (2018) Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat Commun 9(1):1655. https://doi.org/10.1038/s41467-018-03812-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Price ME, Pavlik JA, Sisson JH, Wyatt TA (2015) Inhibition of protein phosphatase 1 reverses alcohol-induced ciliary dysfunction. Am J Physiol Lung Cell Mol Physiol 308(6):L577–585. https://doi.org/10.1152/ajplung.00336.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Wyatt TA, Wells SM, Alsaidi ZA, DeVasure JM, Klein EB, Bailey KL, Sisson JH (2013) Asymmetric dimethylarginine blocks nitric oxide-mediated alcohol-stimulated cilia beating. Mediators Inflamm 2013:592892. https://doi.org/10.1155/2013/592892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Wyatt TA, Bailey KL, Simet SM, Warren KJ, Sweeter JM, DeVasure JM, Pavlik JA, Sisson JH (2019) Alcohol potentiates RSV-mediated injury to ciliated airway epithelium. Alcohol 80:17–24. https://doi.org/10.1016/j.alcohol.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  301. Villa M, Crotta S, Dingwell KS, Hirst EM, Gialitakis M, Ahlfors H, Smith JC, Stockinger B, Wack A (2016) The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis. Nat Commun 7:12652. https://doi.org/10.1038/ncomms12652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Workman AD, Carey RM, Chen B, Saunders CJ, Marambaud P, Mitchell CH, Tordoff MG, Lee RJ, Cohen NA (2017) CALHM1-mediated ATP release and ciliary beat frequency modulation in nasal epithelial cells. Sci Rep 7(1):6687. https://doi.org/10.1038/s41598-017-07221-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Hoh RA, Stowe TR, Turk E, Stearns T (2012) Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease. PLoS ONE 7(12):e52166. https://doi.org/10.1371/journal.pone.0052166PONE-D-12-33835([pii])

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Johnson JA, Watson JK, Nikolic MZ, Rawlins EL (2018) Fank1 and Jazf1 promote multiciliated cell differentiation in the mouse airway epithelium. Biol Open 7:4. https://doi.org/10.1242/bio.033944

    Article  CAS  Google Scholar 

  305. Gharib SA, Altemeier WA, Van Winkle LS, Plopper CG, Schlesinger SY, Buell CA, Brauer R, Lee V, Parks WC, Chen P (2013) Matrix metalloproteinase-7 coordinates airway epithelial injury response and differentiation of ciliated cells. Am J Respir Cell Mol Biol 48(3):390–396. https://doi.org/10.1165/rcmb.2012-0083OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Shimada IS, Acar M, Burgess RJ, Zhao Z, Morrison SJ (2017) Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells. Genes Dev 31(11):1134–1146. https://doi.org/10.1101/gad.291773.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Shah PT, Stratton JA, Stykel MG, Abbasi S, Sharma S, Mayr KA, Koblinger K, Whelan PJ, Biernaskie J (2018) Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell 173(4):1045–1057. https://doi.org/10.1016/j.cell.2018.03.063(e1049)

    Article  CAS  PubMed  Google Scholar 

  308. Hua X, Zeman KL, Zhou B, Hua Q, Senior BA, Tilley SL (1985) Bennett WD (2010) Noninvasive real-time measurement of nasal mucociliary clearance in mice by pinhole gamma scintigraphy. J Appl Physiol 108(1):189–196. https://doi.org/10.1152/japplphysiol.00669.2009

    Article  Google Scholar 

  309. Veres TZ, Kopcsanyi T, Tirri M, Braun A, Miyasaka M, Germain RN, Jalkanen S, Salmi M (2017) Intubation-free in vivo imaging of the tracheal mucosa using two-photon microscopy. Sci Rep 7(1):694. https://doi.org/10.1038/s41598-017-00769-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Donnelley M, Morgan KS, Siu KK, Fouras A, Farrow NR, Carnibella RP, Parsons DW (2014) Tracking extended mucociliary transport activity of individual deposited particles: longitudinal synchrotron X-ray imaging in live mice. J Synchrotron Radiat 21(Pt 4):768–773. https://doi.org/10.1107/S160057751400856X

    Article  PubMed  Google Scholar 

  311. Wang S, Burton JC, Behringer RR, Larina IV (2015) In vivo micro-scale tomography of ciliary behavior in the mammalian oviduct. Sci Rep 5:13216. https://doi.org/10.1038/srep13216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Liu T, Jin X, Prasad RM, Sari Y, Nauli SM (2014) Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties. J Neurosci Res 92(9):1199–1204. https://doi.org/10.1002/jnr.23405

    Article  CAS  PubMed  Google Scholar 

  313. Ansari R, Buj C, Pieper M, Konig P, Schweikard A, Huttmann G (2015) Micro-anatomical and functional assessment of ciliated epithelium in mouse trachea using optical coherence phase microscopy. Opt Express 23(18):23217–23224. https://doi.org/10.1364/OE.23.023217

    Article  CAS  PubMed  Google Scholar 

  314. Lee YL, Sante J, Comerci CJ, Cyge B, Menezes LF, Li FQ, Germino GG, Moerner WE, Takemaru K, Stearns T (2014) Cby1 promotes Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface and facilitates proper cilium formation and function. Mol Biol Cell 25(19):2919–2933. https://doi.org/10.1091/mbc.E14-02-0735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Mori M, Hazan R, Danielian PS, Mahoney JE, Li H, Lu J, Miller ES, Zhu X, Lees JA, Cardoso WV (2017) Cytoplasmic E2f4 forms organizing centres for initiation of centriole amplification during multiciliogenesis. Nat Commun 8:15857. https://doi.org/10.1038/ncomms15857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Nanjundappa R, Kong D, Shim K, Stearns T, Brody SL, Loncarek J, Mahjoub MR (2019) Regulation of cilia abundance in multiciliated cells. Elife. https://doi.org/10.7554/eLife.44039

    Article  PubMed  PubMed Central  Google Scholar 

  317. Shi X, Garcia G 3rd, Van De Weghe JC, McGorty R, Pazour GJ, Doherty D, Huang B, Reiter JF (2017) Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat Cell Biol 19(10):1178–1188. https://doi.org/10.1038/ncb3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully thank Casey McKenzie for critical reading of the manuscript. This work was supported by Sanford Research (LL) and National Institutes of Health grant R01HL117836 from the National Heart, Lung, and Blood Institute (LEO).

Funding

This work was supported by Sanford Research (LL) and National Institutes of Health grant R01HL117836 from the National Heart, Lung, and Blood Institute (LEO).

Author information

Authors and Affiliations

Authors

Contributions

LL conceived the article, and LL and LEO both performed literature searches and wrote the manuscript.

Corresponding author

Correspondence to Lance Lee.

Ethics declarations

Conflicts of interest

The authors declare no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, L., Ostrowski, L.E. Motile cilia genetics and cell biology: big results from little mice. Cell. Mol. Life Sci. 78, 769–797 (2021). https://doi.org/10.1007/s00018-020-03633-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03633-5

Keywords

Navigation