Skip to main content
Log in

Transition fronts in unbounded domains with multiple branches

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the existence and uniqueness of transition fronts of a general reaction-diffusion-advection equation in domains with multiple branches. In this paper, every branch in the domain is not necessary to be straight and we use the notions of almost-planar fronts to generalize the standard planar fronts. Under some assumptions of existence and uniqueness of almost-planar fronts with positive propagating speeds in extended branches, we prove the existence of entire solutions emanating from some almost-planar fronts in some branches. Then, we get that these entire solutions converge to almost-planar fronts in some of the rest branches as time increases if no blocking occurs in these branches. Finally, provided by the complete propagation of every front-like solution emanating from one almost-planar front in every branch, we prove that there is only one type of transition fronts, that is, the entire solutions emanating from some almost-planar fronts in some branches and converging to almost-planar fronts in the rest branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. A bounded set K is called star-shaped if there is x in the interior \(\mathrm {Int}(K)\) of K such that \(x+t(y-x)\in \mathrm {Int}(K)\) for all \(y\in \partial K\) and \(t\in [0,1)\). Then, we say that K is star-shaped with respect to the point x.

References

  1. Berestycki, H., Bouhours, J., Chapuisat, G.: Front blocking and propagation in cylinders with varying cross section. Calc. Var. Part. Diff. Equ. 55, 1–32 (2016)

    Article  MathSciNet  Google Scholar 

  2. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MathSciNet  Google Scholar 

  3. Berestycki, H., Hamel, F.: Generalized traveling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations. In honor of H. Brezis, Amer. Math. Soc., Contemp. Math. 446, 101-123 (2007)

  4. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65, 592–648 (2012)

    Article  MathSciNet  Google Scholar 

  5. Berestycki, H., Hamel, F., Matano, H.: Bistable travelling waves around an obstacle. Commun. Pure Appl. Math. 62, 729–788 (2009)

    Article  Google Scholar 

  6. Berestycki, H., Nirenberg, L.: Traveling fronts in cylinders. Ann. Inst. H. Poincaré, Anal. Non Linéaire 9, 497–572 (1992)

    Article  MathSciNet  Google Scholar 

  7. Chapuisat, G., Grenier, E.: Existence and non-existence of progressive wave solutions for a bistable reaction-diffusion equation in an infinite cylinder whose diameter is suddenly increased. Commun. Part. Diff. Equ. 30, 1805–1816 (2005)

    Article  Google Scholar 

  8. Ding, W., Hamel, F., Zhao, X.: Propagation phenomena for periodic bistable reaction-diffusion equations. Calc. Var. Part. Diff. Equ. 54, 2517–2551 (2015)

    Article  Google Scholar 

  9. Ding, W., Hamel, F., Zhao, X.: Bistable pulsating fronts for reaction-diffusion equations in a periodic habitat. Indiana Univ. Math. J. 66, 1189–1265 (2017)

    Article  MathSciNet  Google Scholar 

  10. Ducasse, R., Rossi, L.: Blocking and invasion for reaction-diffusion equations in periodic media, preprint (https://arxiv.org/abs/1711.07389)

  11. Ducrot, A.: A multi-dimensional bistable nonlinear diffusion equation in periodic medium. Math. Ann. 366, 783–818 (2016)

    Article  MathSciNet  Google Scholar 

  12. Eberle, S.: Front blocking versus propagation in the presence of drift disturbance in the direction of propagation, preprint

  13. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Article  Google Scholar 

  14. Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937)

    MATH  Google Scholar 

  15. Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Europe. Math. Soc. 17, 2243–2288 (2015)

    Article  MathSciNet  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    Book  Google Scholar 

  17. Guo, H., Hamel, F., Sheng, W.J.: On the mean speed of bistable transition fronts in unbounded domains, J. Math. Pures Appl., to appear

  18. Hamel, F., Monneau, R.: Solutions of semilinear elliptic equations in \(\mathbb{R}^N\) with conical-shaped level sets. Commun. Part. Diff. Equ. 25, 769–819 (2000)

    Article  Google Scholar 

  19. Hamel, F., Monneau, R., Roquejoffre, J.-M.: Existence and qualitative properties of multidimensional conical bistable fronts. Disc. Cont. Dyn. Syst. A 13, 1069–1096 (2005)

    Article  MathSciNet  Google Scholar 

  20. Hamel, F., Monneau, R., Roquejoffre, J.-M.: Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Disc. Cont. Dyn. Syst. A 14, 75–92 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Haragus, M., Scheel, A.: Corner defects in almost planar interface propagation. Ann. Inst. H. Poincaré, Anal. Non Linéaire 23, 283–329 (2006)

    Article  MathSciNet  Google Scholar 

  22. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moskow Univ. Math. Bull. 1, 1–25 (1937)

    Google Scholar 

  23. Matano, H., Nakamura, K.I., Lou, B.: Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogeneity limit. Netw. Heterog. Media 1, 537–568 (2006)

    Article  MathSciNet  Google Scholar 

  24. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    Book  Google Scholar 

  25. Ninomiya, H., Taniguchi, M.: Existence and global stability of traveling curved fronts in the Allen–Cahn equations. J. Diff. Equ. 213, 204–233 (2005)

    Article  MathSciNet  Google Scholar 

  26. Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré, Anal. Non Linéaire 26, 1021–1047 (2009)

    Article  MathSciNet  Google Scholar 

  27. Pauthier, A.: Entire solution in cylinder-like domains for a bistable reaction-diffusion equation. J. Dyn. Diff. Equ. 30, 1273 (2018)

    Article  MathSciNet  Google Scholar 

  28. Roques, L., Roques, A., Berestycki, H., Kretzschmar, A.: A population facing climate change: joint influences of Allee effects and environmental boundary geometry. Pop. Ecol. 50, 215–225 (2008)

    Article  Google Scholar 

  29. Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution. Oxford University Press, Oxford (1997)

    Google Scholar 

  30. Taniguchi, M.: Traveling fronts of pyramidal shapes in the Allen–Cahn equation. SIAM J. Math. Anal. 39, 319–344 (2007)

    Article  MathSciNet  Google Scholar 

  31. Taniguchi, M.: The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations. J. Diff. Equ. 246, 2103–2130 (2009)

    Article  MathSciNet  Google Scholar 

  32. Taniguchi, M.: Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Disc. Cont. Dyn. Syst. A 32, 1011–1046 (2012)

    Article  MathSciNet  Google Scholar 

  33. Xin, X.: Existence and uniqueness of travelling waves in a reaction-diffusion equation with combustion nonlinearity. Indiana Univ. Math. J. 40, 985–1008 (1991)

    Article  MathSciNet  Google Scholar 

  34. Xin, X.: Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Diff. Equ. 3, 541–573 (1991)

    Article  MathSciNet  Google Scholar 

  35. Xin, J.X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992)

    Article  MathSciNet  Google Scholar 

  36. Xin, J.X.: Existence and nonexistence of traveling waves and reaction-diffusion front propagation in periodic media. J. Statist. Phys. 73, 893–926 (1993)

    Article  MathSciNet  Google Scholar 

  37. Xin, J.X.: Analysis and modeling of front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

    Article  MathSciNet  Google Scholar 

  38. Xin, J.X., Zhu, J.: Quenching and propagation of bistable reaction-diffusion fronts in multidimensional periodic media. Phys. D 81, 94–110 (1995)

    Article  MathSciNet  Google Scholar 

  39. Zlatoš, A.: Existence and non-existence of transition fronts for bistable and ignition reactions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 34, 1687–1705 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research partially supported by National Science Foundation (grant no. NSF1826801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Guo.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H. Transition fronts in unbounded domains with multiple branches. Calc. Var. 59, 160 (2020). https://doi.org/10.1007/s00526-020-01825-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-020-01825-2

Mathematics Subject Classification

Navigation