Skip to main content
Log in

Recent Advances in Synthetic Biology for the Engineering of Lactic Acid Bacteria

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Lactic acid bacteria (LAB) have a long historical record of usage in many types of food-related bioprocesses, and as LAB have been found to have intrinsic beneficial effects on human health, interest in using LAB as a medical treatment has increased. Moreover, recent advances in synthetic biology have enabled the engineering of so-called “smart” bacteria with the native characteristics of LAB. With various synthetic parts for gene expression, genome editing, and genetic circuits, gene expression can be precisely regulated in LAB. Moreover, LAB have been successfully developed as potential hosts for therapeutics to detect and control specific diseases or to deliver drug molecules. In this review, we outline the recent development of synthetic parts and approaches for the engineering of LAB. We also discuss the potential application of synthetic biology for the utilization of LAB as living therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

S.:

cerevisiae: Saccharomyces cerevisiae

E.:

coli: Escherichia coli

L.:

lactis: Lactococcus lactis

Lb.:

casei: Lactobacillus casei

Lb.:

plantarum: Lactobacillus plantarum

Lb:

acidophilus: Lactobacillus acidophilus

Lb.:

brevis: Lactobacillus brevis

Lb.:

delbrueckii: Lactobacillus delbrueckii

Lb.:

fermentum: Lactobacillus fermentum

Lb.:

helveticus: Lactobacillus helveticus

Lb.:

pentosus: Lactobacillus pentosus

Lb.:

reuteri: Lactobacillus reuteri

Lb.:

sakei: Lactobacillus sakei

Ln.:

mesenteroides: Leuconostoc mesenteroides

Ln.:

cremoris: Leuconostoc cremoris

Ln.:

citreum: Leuconostoc citreum

V.:

cholerae: Vibrio cholerae

E.:

faecalis: Enterococcus faecalis

S.:

aureus: Staphylococcus aureus

AmpR :

ampicillin resistance

CmR :

chloramphenicol resistance

EmR :

erythromycin resistance

KmR :

kanamycin resistance

References

  1. de Castro, C. P. M. M. Drumond, V. L. Batista, A. Nunes, P. Mancha-Agresti, and V. Azevedo (2018) Vector development timeline for mucosal vaccination and treatment of disease using Lactococcus lactis and design approaches of next generation food grade plasmids. Front. Microbiol. 9: 1805.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Michon, C., P. Langella, V. G. H. Eijsink, G. Mathiesen, and J. M. Chatel (2016) Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb. Cell Fact. 15: 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Börner, R. A., V. Kandasamy, A. M. Axelsen, A. T. Nielsen, and E. F. Bosma (2019) Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol. Lett. 366: fny291.

    Article  CAS  Google Scholar 

  4. Sybesma, W., C. Burgess, M. Starrenburg, D. van Sinderen, and J. Hugenholtz (2004) Multivitamin production in Lactococcus lactis using metabolic engineering. Metab. Eng. 6: 109–115.

    Article  CAS  PubMed  Google Scholar 

  5. Papagianni, M. (2012) Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb. Cell Fact. 11: 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Vos, W. M. and J. Hugenholtz (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol. 22: 72–79.

    Article  CAS  PubMed  Google Scholar 

  7. Bolotin, A., P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weissenbach, S. D. Ehrlich, and A. Sorokin (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sauer, M., H. Russmayer, R. Grabherr, C. K. Peterbauer, and H. Marx (2017) The efficient clade: lactic acid bacteria for industrial chemical production. Trends Biotechnol. 35: 756–769.

    Article  CAS  PubMed  Google Scholar 

  9. Wedajo, B. (2015) Lactic acid bacteria: benefits, selection criteria and probiotic potential in fermented food. J. Prob. Health. 3: 129.

    Article  CAS  Google Scholar 

  10. Harzallah, D. and H. Belhadj (2013) Lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI muccosal barrier. pp. 197–216. In: J. M. Kongo (ed.). Lactic Acid Bacteria-R&D for Food, Health and Livestock Purposes. In Tech, Rijeka, Croatia.

    Google Scholar 

  11. Vieco-Saiz, N., Y. Belguesmia, R. Raspoet, E. Auclair, F. Gancel, I. Kempf, and D. Drider (2019) Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10: 57.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu, R., M. C. Bassalo, R. I. Zeitoun, and R. T. Gill (2015) Genome scale engineering techniques for metabolic engineering. Metab. Eng. 32: 143–154.

    Article  CAS  PubMed  Google Scholar 

  13. Pang, B., L. E. Valencia, J. Wang, Y. Wan, R. Lal, A. Zargar, and J. D. Keasling (2019) Technical advances to accelerate modular type I polyketide synthase engineering towards a retro-biosynthetic platform. Biotechnol. Bioprocess Eng. 24: 413–423.

    Article  CAS  Google Scholar 

  14. Jeong, K. J., J. H. Choi, W. M. Yoo, K. C. Keum, N. C. Yoo, S. Y. Lee, and M. H. Sung (2004) Constitutive production of human leptin by fed-batch culture of recombinant rpoS- Escherichia coli. Protein Expr. Purif. 36: 150–156.

    Article  CAS  PubMed  Google Scholar 

  15. Oh, Y. H., J. W. Choi, E. Y. Kim, B. K. Song, K. J. Jeong, K. Park, I. K. Kim, H. M. Woo, S. H. Lee, and S. J. Park (2015) Construction of synthetic promoter-based expression cassettes for the production of cadaverine in recombinant Corynebacterium glutamicum. Appl. Biochem. Biotechnol. 176: 2065–2075.

    Article  CAS  PubMed  Google Scholar 

  16. Yim, S. S., J. W. Choi, S. H. Lee, and K. J. Jeong (2016) Modular optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for consolidated bioprocessing of hemicellulosic biomass. ACS Synth. Biol. 5: 334–343.

    Article  CAS  PubMed  Google Scholar 

  17. Pedrolli, D. B., N. V. Ribeiro, P. N. Squizato, V. N. de Jesus, D. A. Cozetto, R. B. Tuma, A. Gracindo, M. B. Cesar, P. J. Freire, A. F. da Costa, M. R. C. R. Lins, G. G. Correa, and M. O. Cerri (2019) Engineering microbial living therapeutics: the synthetic biology toolbox. Trends Biotechnol. 37: 100–115.

    Article  CAS  PubMed  Google Scholar 

  18. Mays, Z. J. and N. U. Nair (2018) Synthetic biology in probiotic lactic acid bacteria: At the frontier of living therapeutics. Curr. Opin. Biotechnol. 53: 224–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kok, J., J. M. Van der Vossen, and G. Venema (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol. 48: 726–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Vos, W. M., M. Kleerebezem, and O. P. Kuipers (1997) Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content. Curr. Opin. Biotechnol. 8: 547–553.

    Article  CAS  PubMed  Google Scholar 

  21. Chopin, M. C., A. Chopin, A. Rouault, and D. Simon (1986) Cloning in Streptococcus lactis of plasmid-mediated UV resistance and effect on prophage stability. Appl. Environ. Microbiol. 51: 233–237. 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simon, D. and A. Chopin (1988) Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 70: 559–566.

    Article  CAS  PubMed  Google Scholar 

  23. Kleerebezem, M., M. M. Beerthuyzen, E. E. Vaughan, W. M. De Vos, and O. P. Kuipers (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl. Environ. Microbiol. 63: 4581–4584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Que, Y. A., J. A. Haefliger, P. Francioli, and P. Moreillon (2000) Expression of Staphylococcus aureus clumping factor A in Lactococcus lactis subsp. cremoris using a new shuttle vector. Infect. Immun. 68: 3516–3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O’Sullivan, D. J. and T. R. Klaenhammer (1993) High- and low-copy-number Lactococcus shuttle cloning vectors with features for clone screening. Gene. 137: 227–231.

    Article  PubMed  Google Scholar 

  26. Son, Y. J., A. J. Ryu, L. Li, N. S. Han, and K. J. Jeong (2016) Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum. Microb. Cell Fact. 15: 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Platteeuw, C., G. Simons, and W. M. De Vos (1994) Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl. Environ. Microbiol. 60: 587–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Solaiman, D. K. Y., G. A. Somkuti, and D. H. Steinberg (1992) Construction and characterization of shuttle plasmids for lactic acid bacteria and Escherichia coli. Plasmid. 28: 25–36.

    Article  CAS  PubMed  Google Scholar 

  29. Tagliavia, M. and A. Nicosia (2019) Advanced strategies for food-grade protein production: A NEW E. coli/lactic acid bacteria shuttle vector for improved cloning and food-grade expression. Microorganisms. 7: 116.

    Article  CAS  PubMed Central  Google Scholar 

  30. Sorvig, E., S. Grönqvist, K. Naterstad, G. Mathiesen, V. G. H. Eijsink, and L. Axelsson (2003) Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum. FEMS Microbiol. Lett. 229: 119–126.

    Article  CAS  PubMed  Google Scholar 

  31. Spangler, J. R., J. C. Caruana, D. A. Phillips, and S. A. Walper (2019) Broad range shuttle vector construction and promoter evaluation for the use of Lactobacillus plantarum WCFS1 as a microbial engineering platform. Synth. Biol. 4: ysz012.

    Article  CAS  Google Scholar 

  32. Suebwongsa, N., V. Lulitanond, B. Mayo, P. Yotpanya, and M. Panya (2016) Development of an Escherichia coli-Lactobacillus casei shuttle vector for heterologous protein expression in Lactobacillus casei. Springerplus. 5: 169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kaur, T., P. P. Balgir, and B. Kaur (2019) Construction ofa shuttle expression vector for lactic acid bacteria. J. Genet. Eng. Biotechnol. 17: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Biet, F., Y. Cenatiempo, and C. Fremaux (1999) Characterization of pFR18, a small cryptic plasmid from Leuconostoc mesenteroides ssp. mesenteroides FR52, and its use as a food grade vector. FEMS Microbiol. Lett. 179: 375–383.

    Article  CAS  PubMed  Google Scholar 

  35. Biet, F., Y. Cenatiempo, and C. Fremaux (2002) Identification of a replicon from pTXL1, a small cryptic plasmid from Leuconostoc mesenteroides subsp. mesenteroides Y110, and development of a food-grade vector. Appl. Environ. Microbiol. 68: 6451–6456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eom, H. J., S. K. Cho, M. S. Park, G. E. Ji, and N. S. Han (2010) Characterization of Leuconostoc citreum plasmid pCB18 and development of broad host range shuttle vector for lactic acid bacteria. Biotechnol. Bioprocess Eng. 15: 946–952.

    Article  CAS  Google Scholar 

  37. Eom, H. J., J. S. Moon, S. K. Cho, J. H. Kim, and N. S. Han (2012) Construction of theta-type shuttle vector for Leuconostoc and other lactic acid bacteria using pCB42 isolated from kimchi. Plasmid. 67: 35–43.

    Article  CAS  PubMed  Google Scholar 

  38. Park, J., M. Lee, J. Jung, and J. Kim (2005) pIH01, a small cryptic plasmid from Leuconostoc citreum IH3. Plasmid. 54: 184–189.

    Article  CAS  PubMed  Google Scholar 

  39. Oliveira, P. H. and J. Mairhofer (2013) Marker-free plasmids for biotechnological applications-implications and perspectives. Trends Biotechnol. 31: 539–547.

    Article  CAS  PubMed  Google Scholar 

  40. Silva, C. C. G., S. P. M. Silva, and S. C. Ribeiro (2018) Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 9: 594.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, R., T. M. Takala, M. Qiao, H. Xu, and P. E. J. Saris (2011) Nisin-selectable food-grade secretion vector for Lactococcus lactis. Biotechnol. Lett. 33: 797–803.

    Article  CAS  PubMed  Google Scholar 

  42. Allison, G. E. and T. R. Klaenhammer (1996) Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl. Environ. Microbiol. 62: 4450–4460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Campelo, A. B., C. Roces, M. L. Mohedano, P. López, A. Rodríguez, and B. Martinez (2014) A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis. Microb. Cell Fact. 13: 77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Dickely, F., D. Nilsson, E. B. Hansen, and E. Johansen (1995) Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol. Microbiol. 15: 839–847.

    Article  CAS  PubMed  Google Scholar 

  45. Platteeuw, C., I. van Alen-Boerrigter, S. van Schalkwijk, and W. M. De Vos (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl. Environ. Microbiol. 62: 1008–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maccormick, C. A., H. G. Griffin, and M. J. Gasson (1995) Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon. FEMS Microbiol. Lett. 127: 105–109.

    Article  CAS  PubMed  Google Scholar 

  47. Glenting, J., S. M. Madsen, A. Vrang, A. Fomsgaard, and H. Israelsen (2002) A plasmid selection system in Lactococcus lactis and its use for gene expression in L. lactis and human kidney fibroblasts. Appl. Environ. Microbiol. 68: 5051–5056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Vos, W. and G. Simons (1994) Gene cloning and expression systems in Lactococci. pp. 52–105. In: M. J. Gasson and W. de Vos (eds.). Genetics and Biotechnology of Lactic Acid Bacteria. Springer, Dordrecht, Netherlands.

    Chapter  Google Scholar 

  49. Jensen, P. R. and K. Hammer (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tauer, C., S. Heinl, E. Egger, S. Heiss, and R. Grabherr (2014) Tuning constitutive recombinant gene expression in Lactobacillus plantarum. Microb. Cell Fact. 13: 150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhu, D., F. Liu, H. Xu, Y. Bai, X. Zhang, P. E. J. Saris, and M. Qiao (2015) Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8. FEMS Microbiol. Lett. 362: fnv107.

    Article  PubMed  CAS  Google Scholar 

  52. Jang, S. H., J. W. Cha, N. S. Han, and K. J. Jeong (2018) Development of bicistronic expression system for the enhanced and reliable production of recombinant proteins in Leuconostoc citreum. Sci. Rep. 8: 8852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kuipers, O. P., M. M. Beerthuyzen, P. G. de Ruyter, E. J. Luesink, and W. M. de Vos (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299–27304.

    Article  CAS  PubMed  Google Scholar 

  54. Lokman, B. C., R. J. Leer, R. van Sorge, and P. H. Pouwels (1994) Promotor analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. Molec. Gen. Genet. 245: 117–125.

    Article  CAS  PubMed  Google Scholar 

  55. Miyoshi, A., E. Jamet, J. Commissaire, P. Renault, P. Langella, and V. Azevedo (2004) A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol. Lett. 239: 205–212.

    Article  CAS  PubMed  Google Scholar 

  56. Llull, D. and I. Poquet (2004) New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl. Environ. Microbiol. 70: 5398–5406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mu, D., M. Montalbán-López, Y. Masuda, and O. P. Kuipers (2013) Zirex: a novel zinc-regulated expression system for Lactococcus lactis. Appl. Environ. Microbiol. 79: 4503–4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Linares, D. M., P. Alvarez-Sieiro, B. del Rio, V. Ladero, B. Redruello, M. C. Martin, M. Fernandez, and M. A. Alvarez (2015) Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis. Microb. Cell Fact. 14: 208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Benbouziane, B., P. Ribelles, C. Aubry, R. Martin, P. Kharrat, A. Riazi, P. Langella, and L. G. Bermudez-Humaran (2013) Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J. Biotechnol. 168: 120–129.

    Article  CAS  PubMed  Google Scholar 

  60. O’Sullivan, D. J., S. A. Walker, S. G West, and T. R. Klaenhammer (1996) Development of an expression strategy using a lytic phage to trigger explosive plasmid amplification and gene expression. Biotechnology. 14: 82–87.

    PubMed  Google Scholar 

  61. Fernández de Palencia, P., C. Nieto, P. Acebo, M. Espinosa, and P. Lopez (2000) Expression of green fluorescent protein in Lactococcus lactis. FEMS Microbiol. Lett. 183: 229–234.

    Article  PubMed  Google Scholar 

  62. Chen, Y. S. and J. L. Steele (2005) Analysis of promoter sequences from Lactobacillus helveticus CNRZ32 and their activity in other lactic acid bacteria. J. Appl. Microbiol. 98: 64–72.

    Article  CAS  PubMed  Google Scholar 

  63. Rud, I., P. R. Jensen, K. Naterstad, and L. Axelsson (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology. 152: 1011–1019.

    Article  CAS  PubMed  Google Scholar 

  64. Jeong, D. W., Y. C. Choi, J. M. Lee, J. H. Kim, J. H. Lee, K. H. Kim, and H. J. Lee (2006) Isolation and characterization of promoters from Lactococcus lactis ssp. cremoris LM0230. Food Microbiol. 23: 82–89.

    Article  CAS  PubMed  Google Scholar 

  65. Lee, K. H., W. J. Park, J. Y. Kim, H. G. Kim, J. M. Lee, J. H. Kim, J. W. Park, J. H. Lee, S. K. Chung, and D. K. Chung (2007) Development of a monitoring vector for Leuconostoc mesenteroides using the green fluorescent protein gene. J. Microbiol. Biotechnol. 17: 1213–1216.

    CAS  PubMed  Google Scholar 

  66. An, H. Y. and T. Miyamoto (2006) Cloning and sequencing of plasmid pLC494 isolated from human intestinal Lactobacillus casei: construction of an Escherichia coli-Lactobacillus shuttle vector. Plasmid. 55: 128–134.

    Article  CAS  PubMed  Google Scholar 

  67. Lizier, M., P. G. Sarra, R. Cauda, and F. Lucchini (2010) Comparison of expression vectors in Lactobacillus reuteri strains. FEMS Microbiol. Lett. 308: 8–15.

    Article  CAS  PubMed  Google Scholar 

  68. Sun, Z., J. Kong, and W. Kong (2010) Characterization of a cryptic plasmid pD403 from Lactobacillus plantarum and construction of shuttle vectors based on its replicon. Mol. Biotechnol. 45: 24–33.

    Article  CAS  PubMed  Google Scholar 

  69. Cho, S. K., S. J. Lee, S. Y. Shin, J. S. Moon, L. Li, W. Joo, D. K. Kang, and N. S. Han (2015) Development of bile salt-resistant Leuconostoc citreum by expression of bile salt hydrolase gene. J. Microbiol. Biotechnol. 25: 2100–2105.

    Article  CAS  PubMed  Google Scholar 

  70. Ogaugwu, C. E., Q. Cheng, A. Fieck, I. Hurwitz, and R. Durvasula (2018) Characterization of a Lactococcus lactis promoter for heterologous protein production. Biotechnol. Rep. 17: 86–92.

    Article  Google Scholar 

  71. Jørgensen, C. M., A. Vrang, and S. M. Madsen (2014) Recombinant protein expression in Lactococcus lactis using the P170 expression system. FEMS Microbiol. Lett. 351: 170–178.

    Article  PubMed  CAS  Google Scholar 

  72. Zhu, D., K. Zhao, H. Xu, X. Zhang, Y. Bai, P. E. J. Saris, and M. Qiao (2015) Construction of thyA deficient Lactococcus lactis using the Cre-loxP recombination system. Ann. Microbiol. 65: 1659–1665.

    Article  CAS  Google Scholar 

  73. Van Pijkeren, J. P. and R. A. Britton (2012) High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res. 40: e76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pines, G., E. F. Freed, J. D. Winkler, and R. T. Gill (2015) Bacterial recombineering: genome engineering via phage-based homologous recombination. ACS Synth. Biol. 4: 1176–1185.

    Article  CAS  PubMed  Google Scholar 

  75. Ran, F. A., P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott, and F. Zhang (2013) Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8: 2281–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oh, J. H. and J. P. van Pijkeren (2014) CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42: e131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Song, X., H. Huang, Z. Xiong, L. Ai, and S. Yang (2017) CRISPR-Cas9 nickase-assisted genome editing in Lactobacillus casei. Appl. Environ. Microbiol. 83: e01259-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qi, L. S., M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152: 1173–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng, Y., T. Su, and Q. Qi (2019) Microbial CRISPRi and CRISPRa systems for metabolic engineering. Biotechnol. Bioprocess Eng. 24: 579–591.

    Article  CAS  Google Scholar 

  80. Berlec, A., K. Škrlec, J. Kocjan, M. Olenic, and B. Štrukelj (2018) Single plasmid systems for inducible dual protein expression and for CRISPR-Cas9/CRISPRi gene regulation in lactic acid bacterium Lactococcus lactis. Sci. Rep. 8: 1009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sandberg, T. E., M. J. Salazar, L. L. Weng, B. O. Palsson, and A. M. Feist (2019) The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56: 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Banerjee, S., G. Mishra, and A. Roy (2019) Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnol. Bioprocess Eng. 24: 713–733.

    Article  CAS  Google Scholar 

  83. Chen, J., J. Shen, L. I. Hellgren, P. R. Jensen, and C. Solem (2015) Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Sci. Rep. 5: 14199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ju, S. Y., J. H. Kim, and P. C. Lee (2016) Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production. Biotechnol. Biofuels. 9: 240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Mladenović, D., J. Pejin, S. Kocić-Tanackov, A. Djukić-Vuković, and L. Mojović (2019) Enhanced lactic acid production by adaptive evolution of Lactobacillus paracasei on agro-industrial substrate. Appl. Biochem. Biotechnol. 187: 753–769.

    Article  PubMed  CAS  Google Scholar 

  86. Løpez-González, M. J., S. Escobedo, A. Rodríguez, A. R. Neves, T. Janzen, and B. Martínez (2018) Adaptive evolution of industrial Lactococcus lactis under cell envelope stress provides phenotypic diversity. Front. Microbiol. 9: 2654.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bron, P. A. and M. Kleerebezem (2018) Lactic acid bacteria for delivery of endogenous or engineered therapeutic molecules. Front. Microbiol. 9: 1821.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cano-Garrido, O., J. Seras-Franzoso, and E. Garcia-Fruitos (2015) Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb. Cell Fact. 14: 137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Song, A. A. L., L. L. A. In, S. H. E. Lim, and R. A. Rahim (2017) A review on Lactococcus lactis: from food to factory. Microb. Cell Fact. 16: 55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ali, M., A. R. Nelson, A. L. Lopez, and D. A. Sack (2015) Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9: e0003832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Mao, N., A. Cubillos-Ruiz, D. E. Cameron, and J. J. Collins (2018) Probiotic strains detect and suppress cholera in mice. Sci. Transl. Med. 10: eaao2586.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Borrero, J., Y. Chen, G. M. Dunny, and Y. N. Kaznessis (2015) Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth. Biol. 4: 299–306.

    Article  CAS  PubMed  Google Scholar 

  93. Lubkowicz, D., C. L. Ho, I. Y. Hwang, W. S. Yew, Y. S. Lee, and M. W. Chang (2018) Reprogramming probiotic Lactobacillus reuteri as a biosensor for Staphylococcus aureus derived AIP-I detection. ACS Synth. Biol. 7: 1229–1237.

    Article  CAS  PubMed  Google Scholar 

  94. Liu, J., S. H. J. Chan, J. Chen, C. Solem, and P. R. Jensen (2019) Systems biology — A guide for understanding and developing improved strains of lactic acid bacteria. Front. Microbiol. 10: 876

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intelligent Synthetic Biology Center of the Global Frontier Project (Grant no. NRF-2014M3A6A8066443) funded by the Ministry of Science and ICT (MSIT)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Jun Jeong.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J., Jeong, K.J. Recent Advances in Synthetic Biology for the Engineering of Lactic Acid Bacteria. Biotechnol Bioproc E 25, 962–973 (2020). https://doi.org/10.1007/s12257-020-0033-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0033-6

Keywords

Navigation