Skip to main content
Log in

Anaerobic Digestion of Digested Manure Fibers: Influence of Thermal and Alkaline Thermal Pretreatment on the Biogas Yield

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Anaerobic digestion (AD) of animal manure converts only half of the organic material into biogas due to the presence of a significant amount of lignocellulosic materials in manure. In this study, alkaline thermal pretreatment was used for improving anaerobic digestion of residual manure fibers after AD. Anaerobic digestion of pretreated manure fibers was done in batch culture under mesophilic and thermophilic conditions. The results of the study showed that degradation of manure fibers was improved ca. 43.6% as a result of alkaline thermal pretreatment with 3% w/w NaOH added. Methane yield improved by 143.5 and 180.2% under mesophilic and thermophilic conditions, respectively. Compositional analysis of the effluent after AD showed the percentile conversion of 50.8% of cellulose, 59.5% of hemicellulose, 39.9% of acid-soluble and 21.7% of acid-insoluble lignin to methane under mesophilic conditions. Under thermophilic conditions, 57.3% of cellulose, 70.1% of hemicellulose, 39.4% of acid-soluble and 19.4% of acid-insoluble lignin were converted to methane. The result showed that alkaline thermal pretreatment of manure fibers can enhance the performance of AD while shortening the time needed to recover the maximum amount of biogas from AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khan I (2019) Greenhouse gas emission accounting approaches in electricity generation systems: a review. Atmos Environ 200:131–141. https://doi.org/10.1016/j.atmosenv.2018.12.005

    Article  CAS  Google Scholar 

  2. Khan I (2020) Impacts of energy decentralization viewed through the lens of the energy cultures framework: solar home systems in the developing economies. Renew Sust Energ Rev 119:109576. https://doi.org/10.1016/j.rser.2019.109576

    Article  Google Scholar 

  3. Khan MU, Ahring BK (2020) Anaerobic digestion of biorefinery lignin: effect of different wet explosion pretreatment conditions. Bioresour Technol 298:122537. https://doi.org/10.1016/j.biortech.2019.122537

    Article  CAS  Google Scholar 

  4. Maurya R, Tirkey SR, Rajapitamahuni S, Ghosh A, Mishra S (2019) Recent advances and future prospective of biogas production. In: Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts, vol 1. Woodhead Publishing, pp 159–178. https://doi.org/10.1016/B978-0-12-817937-6.00009-6

  5. Nevzorova T, Kutcherov V (2019) Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energ Strat Rev 26:100414. https://doi.org/10.1016/j.esr.2019.100414

    Article  Google Scholar 

  6. Dehkordi SMMN, Jahromi ART, Ferdowsi A, Shumal M, Dehnavi A (2020) Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran). Renew Sust Energ Rev 119:109586. https://doi.org/10.1016/j.rser.2019.109586

    Article  CAS  Google Scholar 

  7. Lee J, Park KY, Cho J, Kwon EE, Kim JY (2018) Anaerobic digestion as an alternative disposal for phytoremediated biomass from heavy metal contaminated sites. Environ Pollut 243:1704–1709. https://doi.org/10.1016/j.envpol.2018.09.108

    Article  CAS  PubMed  Google Scholar 

  8. Jurado E, Skiadas IV, Gavala HN (2013) Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment. Appl Energy 109:104–111. https://doi.org/10.1016/j.apenergy.2013.03.075

    Article  CAS  Google Scholar 

  9. Triolo JM, Ward AJ, Pedersen L, Sommer SG (2013) Characteristics of animal slurry as a key biomass for biogas production in Denmark. In: Matovic MD (ed) Biomass Now – Sustainable Growth and Use. InTech, Kap, pp 307–326

  10. Soltanian S, Aghbashlo M, Almasi F, Hosseinzadeh-Bandbafha H, Nizami AS, Ok YS, Tabatabaei M (2020) A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Convers Manag 212:112792. https://doi.org/10.1016/j.enconman.2020.112792

    Article  CAS  Google Scholar 

  11. Khan MU, Ahring BK (2019) Lignin degradation under anaerobic digestion: influence of lignin modifications-a review. Biomass Bioenergy 128:105325. https://doi.org/10.1016/j.biombioe.2019.105325

    Article  CAS  Google Scholar 

  12. Angelidaki I, Boe K, Ellegaard L (2005) Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci Technol 52:189–194. https://doi.org/10.2166/wst.2005.0516

    Article  CAS  PubMed  Google Scholar 

  13. Ai P, Zhang X, Dinamarca C, Elsayed M, Yu L, Xi J, Mei Z (2019) Different effects of ozone and aqueous ammonia in a combined pretreatment method on rice straw and dairy manure fiber for enhancing biomethane production. Bioresour Technol 282:275–284. https://doi.org/10.1016/j.biortech.2019.03.021

    Article  CAS  PubMed  Google Scholar 

  14. Mirtsou-Xanthopoulou C, Skiadas IV, Gavala HN (2019) On the effect of aqueous ammonia soaking pre-treatment on continuous anaerobic digestion of digested swine manure fibers. Molecules 24(13):2469. https://doi.org/10.3390/molecules24132469

    Article  CAS  PubMed Central  Google Scholar 

  15. Fernandez HC, Franco RT, Bayard R, Buffiere P (2020) Mechanical pre-treatments evaluation of cattle manure before anaerobic digestion. Waste Biomass Valori:1–10. https://doi.org/10.1007/s12649-020-01022-4

  16. Victorin M, Davidsson Å, Wallberg O (2020) Characterization of mechanically pretreated wheat straw for biogas production. Bioenergy Res 13:833–844. https://doi.org/10.1007/s12155-020-10126-7

    Article  CAS  Google Scholar 

  17. Thomas HL, Arnoult S, Brancourt-Hulmel M, Carrère H (2019) Methane production variability according to Miscanthus genotype and alkaline pretreatments at high solid content. Bioenergy Res 12:325–337. https://doi.org/10.1007/s12155-018-9957-5

    Article  CAS  Google Scholar 

  18. Zhao C, Shao Q, Chundawat SP (2020) Recent advances on ammonia-based pretreatments of lignocellulosic biomass. Bioresour Technol 298:122446. https://doi.org/10.1016/j.biortech.2019.122446

    Article  CAS  PubMed  Google Scholar 

  19. Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJ, Romaní A, Smirnova I (2020) Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  PubMed  Google Scholar 

  20. Ruiz HA, Vicente AA, Teixeira JA (2012) Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107. https://doi.org/10.1016/j.indcrop.2011.08.014

    Article  CAS  Google Scholar 

  21. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51. https://doi.org/10.1016/j.rser.2012.11.069

    Article  CAS  Google Scholar 

  22. Ferreira JA, Taherzadeh MJ (2020) Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour Technol 299:122695. https://doi.org/10.1016/j.biortech.2019.122695

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Liu Y, Chen H (2019) A steam-explosion-based hydrolysis and acidification technology for cornstalk bioconversion. Bioenergy Res 12:103–111. https://doi.org/10.1007/s12155-018-9945-9

    Article  CAS  Google Scholar 

  24. Supian MAF, Mohamad S, Ismail ZH, Amin KNM, Jamari SS, Shaarani SM, Abdullah A (2019) Analysis on the performance of hot water extraction and alkaline extraction for sodium hydroxide-assisted steam exploded empty fruit bunch at pilot scale. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, pp 469–012120. https://doi.org/10.1088/1757-899X/469/1/012120

  25. Matsakas L, Sarka O, Jansson S, Rova U, Christakopoulos P (2020) A novel hybrid organosolv-steam explosion pretreatment and fractionation method delivers solids with superior thermophilic digestibility to methane. Bioresour Technol 316:123973. https://doi.org/10.1016/j.biortech.2020.123973

    Article  CAS  PubMed  Google Scholar 

  26. Biswas R, Teller PJ, Khan MU, Ahring BK (2020) Sugar production from hybrid poplar sawdust: optimization of enzymatic hydrolysis and wet explosion pretreatment. Molecules 25(15):3396. https://doi.org/10.3390/molecules25153396

    Article  CAS  PubMed Central  Google Scholar 

  27. Biswas R, Uellendahl H, Ahring BK (2015) Wet explosion: a universal and efficient pretreatment process for lignocellulosic biorefineries. Bioenergy Res 8:1101–1116. https://doi.org/10.1007/s12155-015-9590-5

    Article  CAS  Google Scholar 

  28. Abraham A, Mathew AK, Park H, Choi O, Sindhu R, Parameswaran B, Sang BI (2020) Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour Technol 301:122725. https://doi.org/10.1016/j.biortech.2019.122725

    Article  CAS  PubMed  Google Scholar 

  29. Tsapekos P, Kougias PG, Frison A, Raga R, Angelidaki I (2016) Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresour Technol 216:545–552. https://doi.org/10.1016/j.biortech.2016.05.117

    Article  CAS  PubMed  Google Scholar 

  30. Biswas R, Ahring BK, Uellendahl H (2012) Improving biogas yields using an innovative concept for conversion of the fiber fraction of manure. Water Sci Technol 66:1751–1758. https://doi.org/10.2166/wst.2012.298

    Article  PubMed  Google Scholar 

  31. Bruni E, Jensen AP, Angelidaki I (2010) Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour Technol 101:8713–8717. https://doi.org/10.1016/j.biortech.2010.06.108

    Article  CAS  PubMed  Google Scholar 

  32. Angelidaki I, Ahring BK (2000) Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sci Technol 41:189–194. https://doi.org/10.2166/wst.2000.0071

    Article  CAS  PubMed  Google Scholar 

  33. Hartmann H, Angelidaki I, Ahring BK (2000) Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration. Water Sci Technol 41:145–153. https://doi.org/10.2166/wst.2000.0066

    Article  CAS  PubMed  Google Scholar 

  34. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101(19):7523–7528. https://doi.org/10.1016/j.biortech.2010.04.060

    Article  CAS  PubMed  Google Scholar 

  35. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Laboratory Analytical rocedure, NREL/TP-510-42621

  36. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass. Laboratory Analytical Procedure, NREL/TP-510-42622

  37. Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton D (2008) Preparation of samples for compositional analysis: laboratory analytical procedure (LAP). National Renewable Energy Laboratory. Technical report: NREL/TP-510-42620

  38. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, NREL/TP510-42618

  39. Lymperatou A, Gavala HN, Skiadas IV (2017) Optimization of aqueous ammonia soaking of manure fibers by response surface methodology for unlocking the methane potential of swine manure. Bioresour Technol 244:509–516. https://doi.org/10.1016/j.biortech.2017.07.147

    Article  CAS  PubMed  Google Scholar 

  40. Guan R, Li X, Wachemo AC, Yuan H, Liu Y, Zou D, Gu J (2018) Enhancing anaerobic digestion performance and degradation of lignocellulosic components of rice straw by combined biological and chemical pretreatment. Sci Total Environ 637:9–17. https://doi.org/10.1016/j.scitotenv.2018.04.366

    Article  CAS  PubMed  Google Scholar 

  41. Zheng M, Li X, Li L, Yang X, He Y (2009) Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour Technol 100:5140–5145. https://doi.org/10.1016/j.biortech.2009.05.045

    Article  CAS  PubMed  Google Scholar 

  42. Otieno DO, Ahring BK (2012) The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr Res 360:84–92. https://doi.org/10.1016/j.carres.2012.07.017

    Article  CAS  PubMed  Google Scholar 

  43. Poh PE, Chong MF (2009) Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment. Bioresour Technol 100:1–9. https://doi.org/10.1016/j.biortech.2008.06.022

    Article  CAS  PubMed  Google Scholar 

  44. Moset V, Poulsen M, Wahid R, Højberg O, Møller HB (2015) Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb Biotechnol 8(5):787–800. https://doi.org/10.1111/1751-7915.12271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Khalid MJ, Waqas A, Nawaz I (2019) Synergistic effect of alkaline pretreatment and magnetite nanoparticle application on biogas production from rice straw. Bioresour Technol 275:288–296. https://doi.org/10.1016/j.biortech.2018.12.051

    Article  CAS  PubMed  Google Scholar 

  46. Esposito G, Frunzo L, Panico A, Pirozzi F (2011) Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46(2):557–565. https://doi.org/10.1016/j.procbio.2010.10.010

    Article  CAS  Google Scholar 

  47. Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64:139–151. https://doi.org/10.1016/S0960-8524(97)00164-8

    Article  CAS  Google Scholar 

  48. Xiao B, Sun X, Sun R (2001) Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym Degrad Stab 74:307–319. https://doi.org/10.1016/S0141-3910(01)00163-X

    Article  CAS  Google Scholar 

  49. Gierer J (1985) Chemistry of delignification. Wood Sci Technol 19:289–312. https://doi.org/10.1021/es00134a700

    Article  CAS  Google Scholar 

  50. Chen Y, Zhao Z, Zou H, Yang H, Sun T, Li M, He Q (2019) Digestive performance of sludge with different crop straws in mesophilic anaerobic digestion. Bioresour Technol 289:121595. https://doi.org/10.1016/j.biortech.2019.121595

    Article  CAS  PubMed  Google Scholar 

  51. Antonopoulou G, Dimitrellos G, Beobide AS, Vayenas D, Lyberatos G (2015) Chemical pretreatment of sunflower straw biomass: the effect on chemical composition and structural changes. Waste Biomass Valori 6:733–746. https://doi.org/10.1007/s12649-015-9388-x

    Article  CAS  Google Scholar 

  52. Gourdon R, Vermande P (1987) Effects of propionic acid concentration on anaerobic digestion of pig manure. Biomass 13:1–12. https://doi.org/10.1016/0144-4565(87)90067-9

    Article  CAS  Google Scholar 

  53. Capson-Tojo G, Ruiz D, Rouez M, Crest M, Steyer JP, Bernet N, Escudié R (2017) Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste. Bioresour Technol 245:724–733

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from WSU CAHNRS Appendix A program 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitte K. Ahring.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Ahring, B.K. Anaerobic Digestion of Digested Manure Fibers: Influence of Thermal and Alkaline Thermal Pretreatment on the Biogas Yield. Bioenerg. Res. 14, 891–900 (2021). https://doi.org/10.1007/s12155-020-10190-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10190-z

Keywords

Navigation