Skip to main content
Log in

Radioactivity and Radiation Hazard Indices Assessment for Phosphate Rock Samples from Al-Jalamid, Turaif, Umm Wu’al, and As-Sanam, Saudi Arabia

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the activity concentration of 235U, 40K, 238U, 226Ra, and 232Th in phosphate rock found in the Kingdom of Saudi Arabia has been measured by gamma-ray spectrometry. Phosphate is extracted from the northern region in Saudi Arabia and widely used in agriculture as fertilizers as well as in the chemical industry. The average activity concentration of 235U, 238U, 226Ra, 232Th, and 40K has been measured as (10.34 ± 1.49 Bq kg−1, 260.99 ± 19.68 Bq kg−1, 242.33 ± 2.74 Bq kg−1, 3.42 ± 0.94 Bq kg−1, and 47.50 ± 3.03 Bq kg−1) for Al-Jalamid phosphate rock ores, respectively; (46.10 ± 2.61 Bq kg−1, 1028.31 ± 36.88 Bq kg−1, 989.98 ± 6.41 Bq kg−1, 13.75 ± 1.68 Bq kg−1, and 51.93 ± 3.82 Bq kg−1) for Turaif phosphate rock ores, respectively; (63.60 ± 3.33 Bq kg−1, 1353.25 ± 41.58 Bq kg−1, 1304.29 ± 7.70 Bq kg−1, 13.45 ± 1.64 Bq kg−1, and 40.26 ± 3.67 Bq kg−1) for Umm Wu’al phosphate rock ores, respectively; and (13.83 ± 1.59 Bq kg−1, 318.72 ± 21.78 Bq kg−1, 350.50 ± 3.14 Bq kg−1, 5.01 ± 1.13 Bq kg−1, and 42.15 ± 3.02 Bq kg−1) for As-Sanam phosphate mines, respectively. The radiological parameters (gamma index, absorbed dose, outdoor and indoor annual effective dose, and total excess lifetime cancer risk (ELCR)) have also been calculated to assess the health hazards. The radiation indices, effective dose, and ELCR have been found high in all samples corresponding to International Commission on Radiological Protection (ICRP) safety limits, which reflects a radiological health risk for workers and population. The X-ray diffraction (XRD) analysis confirms the concentration of dominant elements like fluorapatite (Ca5(PO4)3F), dolomite (CaMg (CO3)2), and minor traces of quartz (SiO2) and calcite (CaCO3). The elemental concentration of CaO, Al2O3, P2O5, SiO2, MgO Al2O3, and Fe2O3 has been measured by X-ray fluorescence (XRF) technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sam, A.K.; Holmb, E.: The natural radioactivity in phosphate deposits from Sudan. Sci. Total Environ. 162, 173–178 (1995)

    Article  Google Scholar 

  2. Roesseler, C.E.: Control of radium in phosphate mining, beneficiation and chemical processing. In: The Environmental Behaviour of Radium (Vol. 2) (p. 269). IAEA, Vienna. Technical reports Series No. 310. (1990.)

  3. Fourati, A.; Faludi, G.: Changes in radioactivity of phosphate rocks during the process of production. J. Radioanal. Nucl. Chem. 125, 287–293 (1988)

    Article  Google Scholar 

  4. Roselli, C.; Desideri, D.; Meli, M.A.; Feduzi, L.: Sequential extraction for the leachability evaluation of phosphate fertilizers. Microchem. J. 95, 373–376 (2010)

    Article  Google Scholar 

  5. Hamdy, A.; Diab, H.M.; El-Fiki, S.A.; Nouh, S.A.: Natural radioactivity in the cultivated land around a fertilizer factory. In: The Second All African IRPA Regional Radiation Protection Congress 22–26 April 2007, Ismailia, Egypt (2007)

  6. Righi, S.; Lucialli, P.; Bruzzi, L.: Health and environmental impacts of a fertilizer plant—Part I: assessment of radioactive pollution. J. Environ. Radioact. 82, 167–182 (2005)

    Article  Google Scholar 

  7. UNSCEAR: United Nations Scientific Committee on the Effect of Atomic Radiation, Dose Assessment Methodologies. Sources and Effects of Ionizing Radiation. Report to General Assembly, with Scientific Annexes. United Nations, New York (2000)

  8. UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation, Report to the General Assembly, with Scientific Annexes United Nations, New York (1993).

  9. Barisic, D.; Lulic, S.; Miletic, P.: Radium and uranium in phosphate fertilizers and their impact on the radioactivity of waters. Water. Res. 26, 607–611 (1992)

    Article  Google Scholar 

  10. Guimond, R.J.; Hardin, J.M.: Radioactivity released from phosphate-containing fertilizers and from gypsum. Radiat. Phys. Chem. 34(2), 309–315 (1989)

    Google Scholar 

  11. Heijde, H.B.V.; Klijn, P.J.; Passchier, W.F.: Radiological impacts of the disposal of phosphogypsum. Radiat. Prot. Dosim. 24, 419–423 (1988)

    Article  Google Scholar 

  12. Guimond, R.J.: Radium in fertilizers. Technical Report No.310. In: The Environmental Behaviour of Radium, pp. 113–128. International Atomic Energy Agency (IAEA) (1990)

  13. Scholten, L.C.; Timmermans, C.W.M.: Natural radioactivity in phosphate fertilizers. Fert. Res. 43, 103–107 (1996)

    Article  Google Scholar 

  14. Saueia, C.H.; Mazzilli, B.P.; Favaro, D.I.: Natural radioactivity in phosphate rock, phosphogypsum and phosphate fertilizers in Brazil. Radio. Nucl. Chem. 264(2), 445–448 (2005)

    Article  Google Scholar 

  15. UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation. Effects of Ionizing Radiation, UNSCEAR 2006 Report, vol I United Nations, New York Annex B (2008)

  16. Sahu, S.K.; et al.: Natural radioactivity assessment of a phosphate fertilizer plant area. J. RADIA. Res. Appl. Sci. 7, 123–128 (2014)

    Google Scholar 

  17. Petr Ptáček: Phosphate Rocks, Apatites and their Synthetic Analogues-Synthesis, Structure, Properties and Applications, Petr Ptacek, IntechOpen, (2016). https://doi.org/10.5772/62214. https://www.intechopen.com/books/apatites-and-their-synthetic-analogues-synthesis-structure-properties-and-applications/phosphate-rocks

  18. Aydin, F.; Aydin, A.; Saydut, E.G.; Bakirdere, C.: Hamamci, Hazardous metal geochemistry of sedimentary phosphate rock used for fertilizer (Mazldag, SE Anatolia, Turkey). Microchem. J. 96, 247–251 (2010)

    Article  Google Scholar 

  19. Nziguheba, G.; Smolders, E.: Inputs of trace elements in an agricultural soil via phosphate fertilizers in European countries. Sci. Total. Environ. 390, 53–57 (2008)

    Article  Google Scholar 

  20. Schmidt, G.: Handling of radium and uranium contaminated waste piles and other wastes from phosphate ore processing. ISSN: 1018–5593, Repot number: EUR 15448 EN, Contract No: ETNU CT32–0084, European Commission (1995)

  21. SPARCOM: Oslo and Paris commissions, Report on discharge of radioactive substances by non-nuclear industries. This report was made available by EFMA (European Fertilizer manufactures Association) (1997)

  22. Akhtar, N.; Tufail, M.; Ashraf, M.; Iqbal, M.M.: Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore. Pakistan. Radiat. Meas. 39, 11–14 (2005)

    Article  Google Scholar 

  23. Ahmed, N.K.; El-Arabi, A.G.M.: Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate. Upper Egypt. J. Environ. Radioact. 84, 51–64 (2005)

    Article  Google Scholar 

  24. Haridasan, P.P.; Paul, A.C.; Desai, M.V.M.: Natural radionuclides in the aquatic environment of a phosphogypsum disposal area. J. Environ. Radioact. 53(2), 155–165 (2001)

    Article  Google Scholar 

  25. Borges, R.C.; et al.: Radioactive characterization of phosphogypsum from Imbituba, Brazil. J. Environ. Radioact. 126, 188–195 (2013)

    Article  Google Scholar 

  26. USEPA: United States Environmental Protection Agency, 1999. Background Report on Fertilizer Use, Contaminants and Regulations. Report number: EPA 747-R-98–003, USEPA, Washington DC (1999)

  27. IAEA: The Recovery of Uranium from Phosphoric Acid. In: Technical Report Series, vol. 533. International Atomic Energy Agency, Vienna, Austria (1989)

  28. Seelenfreund, J.; Miranda, M.I.; Dinator, R.: Morales, Characterization of obsidian samples from northern and south central Chile using X-ray fluorescence analysis. Chungara 37(2), 245–253 (2005)

    Google Scholar 

  29. Sato, M.; Pereira, L.A.T.; Scapin, M.A.; Cotrim, M.B.; Mucsi, C.S.; Rossi, J.L.; Martinez, L.G.: Chemical and microstructural characterization of remelted Zircaloy by X-ray fluorescence techniques and metallographic analysis. J. Radioanal. Nucl. Chem. 294, 283–288 (2011). https://doi.org/10.1007/s10967-011-1550-8

    Article  Google Scholar 

  30. Ballirano, P.; Caracciolo, G.; Sadun, C.; Caminiti, R.: The use of energy dispersive X-ray diffraction (EDXD) for the investigation of the structural and compositional features of old and modern papers. Microchem. J. 88, 107–112 (2008)

    Article  Google Scholar 

  31. Aldagheiri, M.: Promoting sustainable development in the minerals industry: the phosphate project in Saudi Arabia, WIT Transactions on Ecology and the Environment, Vol 150. WIT Press (2011). https://doi.org/10.2495/SDP110051

  32. Jacobs: Umm wu’al phosphate project, project no: 60-r400-wh, report no: 60-r400-wh/g.06f/0072. Ma’aden (Saudi Arabian mining company) (2013)

  33. Yang, Y.X.; Wu, X.M.: Radioactivity concentrations in soils of the Xiazhuang granite area. China. Appl. Radiat. Isot. 63, 255–259 (2005)

    Article  Google Scholar 

  34. Benke, R.R.; Kearfott, K.J.: Soil sample moisture content as a function of time during oven drying for gamma ray spectroscopic measurements. Nucl. Instrum. Methods Phys. Res. A. 422, 817–819 (1999)

    Article  Google Scholar 

  35. Akhtar, N.; Tufail, M.; Ashraf, M.: Natural environmental radioactivity and estimation of radiation exposure from saline soils. Int. J. Environ. Sci. Technol. 1(4), 279–285 (2005)

    Article  Google Scholar 

  36. Lee, S.C.; et al.: Natural radionuclides contents and radon exhalation rates from building materials used in South Korea. Radiat. Prot. Dosim. 94, 269 (2001)

    Article  Google Scholar 

  37. Tufail, M.; Akhtar, N.; Waqas, M.: Measurement of terrestrial radiation for assessment of gamma dose from cultivated and barren soils of Faisalabad in Pakistan. Radiat. Meas. 41, 443–451 (2006)

    Article  Google Scholar 

  38. AQCS: Intercomparing runs on reference materials. Vienna, Austria: Analytical Quality Control Services, International Atomic Energy Agency (1995)

  39. IAEA: Preparation and Certification of IAEA Gamma-Ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1, report number: IAEA-RL—148, International Atomic Energy Agency, Vienna (1987). https://inis.iaea.org/collection/NCLCollectionStore/_Public/18/088/18088420.pdf?r=1

  40. Iqbal, M.; Tufail, M.; Mirza, M.M.: Measurement of natural radioactivity in marble found in Pakistan using a NaI (Tl) gamma-ray spectrometer. J. Environ. Radioact. 51, 255–265 (2000)

    Article  Google Scholar 

  41. El-Bahi, S.M.; et al.: Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers. Appl. Radiat. Isotopes 123, 121–127 (2017)

    Article  Google Scholar 

  42. Saıdou, F.; Et al, : A comparison of alpha and gamma spectrometry for environmental natural radioactivity surveys. Appl. Radia. Iso. 66, 215–222 (2008)

    Article  Google Scholar 

  43. Wilson, W.F.: A guide of naturally occurring radioactive materials (NORM), 1st edn. Penn Well books Publishing Company, Tusla (1994)

    Google Scholar 

  44. El-Taher, A.; Makhluf, S.; Nossair, A.; Abdel Halim, A.S.: Assessment of natural radioactivity levels and radiation hazards due to cement industry. Appl. Radiat. Isot. 68, 169–174 (2010)

    Article  Google Scholar 

  45. Hayambu, P.; Zaman, M.B.; Lubaba, N.C.H.; Munsaanje, S.S.; Muleya, D.: Natural radioactivity in Zambian building materials collected from Lusaka. J. Radioanal. Nucl. Chem. 199, 229–238 (1995)

    Article  Google Scholar 

  46. EC: Radiological protection principles concerning the natural radioactivity of building materials. Radiation Protection 112. Directorate General Environment. Nuclear Safety and Civil Protection, European Commission (1999)

  47. Quindos, L.S.; Ferrandez, P.L.; Rodenas, C.; Gomez-Anozamena, J.; Arteche, J.: Conversion factors for external gamma dose derived from natural radionuclides in soils. J. Environ. Radioact. 71(2), 139–145 (2004)

    Article  Google Scholar 

  48. Beretka, J.; Mathew, P.J.: Natural radioactivity of Australian building materials, industrial wastes and by products. Health Phys. 48, 87 (1985)

    Article  Google Scholar 

  49. Uosif, M.A.M.; Mostafa, A.M.A.; Elsaman, R.; Moustafa, E.: Natural radioactivity levels and radiological hazards indices of chemical fertilizers commonly used in Upper Egypt. J. Radiat. Res. Appl. Sci. 7(4), 430–437 (2014)

    Article  Google Scholar 

  50. Qureshi, A.A.; Tariq, S.; Din, K.U.; Manzoor, S.; Calligaris, C.; Waheed, A.: Evaluation of excessive lifetime cancer risk due to natural radioactivity in the river's sediments of Northern Pakistan. J. Radiat. Res. Appl. Sci. 7(4), 438–447 (2014)

    Article  Google Scholar 

  51. Karangelos, D.J.; Anagnostakis, M.J.; Hinis, E.P.; Simpoulos, S.E.; Zunic, Z.S.: Determination of depleted uranium in environmental samples by gamma spectroscopic techniques. J. Environ. Radioact. 76(3), 295–310 (2004)

    Article  Google Scholar 

  52. Ivanovich, M.; Harmon, R.S. (eds.): Uranium-series disequilibrium: applications to earth, marine, and environmental sciences, 2nd edn. Clarendon Press, United Kingdom (1992)

    Google Scholar 

  53. Arning, E.T.; et al.: Genesis of phosphorite crusts off Peru. Mar. Geol. 262(1–4), 68–81 (2009)

    Article  Google Scholar 

  54. Al Zahrani, J.H.; Alharbi, W.R.; Adel Abbady, G.E.: Radiological impacts of natural radioactivity and heat generation by radioactive decay of phosphorite deposits from Northwestern Saudi Arabia. Aust. J. Basic Appl. Sci. 5, 683–690 (2011)

    Google Scholar 

  55. Qureshi, A.A.; et al.: Assessment of radiological hazards of Lawrencepur Sand, Pakistan using gamma spectrometry. Radia. T Prot. Dosim. 157(1), 73–84 (2013)

    Article  Google Scholar 

  56. Gradmann, M.: Radioanalytical separation and measurement techniques for uranium in environmental samples. Master thesis, institute of earth and environmental sciences, albert-ludwigs-universität Freiburg (2015)

  57. Hassan, N.M.; Mansour, N.A.; Fayez-Hassan, M.; Sedqy, E.: Assessment of natural radioactivity in fertilizers and phosphate Ores in Egypt. J. Taibah Univ. Sci. 10(2), 296–306 (2016)

    Article  Google Scholar 

  58. Gaafar, I.; El-Shershaby, A.; Zeidan, A.; El-Ahll, L.S.: Natural radioactivity and radiation hazard assessment of phosphate mining, Quseir-Safaga area, Central Eastern Desert, Egypt. NRIAG J. Astron. Geophys. 5(1), 160–172 (2016). https://doi.org/10.1016/j.nriag

    Article  Google Scholar 

  59. Jibiri, N.N.; Fasae, K.P.: Activity concentration of 226Ra, 232Th and 40K in brands of fertilizers used in Nigeria. Radiat. Prot. Dosim. 148(1), 132–137 (2012)

    Article  Google Scholar 

  60. Al-Attar, L.A.; Al-Oudat, M.; Kanakri, S.; Budeir, Y.; Khalily, H.; Hamwi, A.A.: Radiological impacts of phosphogypsum. J. Environ. Manag. 92, 2151–2158 (2011)

    Article  Google Scholar 

  61. Sabiha-Javied, S.; Tufail, M.; Asghar, M.: Hazard of NORM from phosphorite of Pakistan. J. Hazard. Mater. 176, 426–433 (2010)

    Article  Google Scholar 

  62. El-Taher, A.; Makhluf, S.: Natural radioactivity levels in phosphate fertilizer and its environmental implications in Assuit governorate, Upper Egypt. Indian J. Pure Appl. Phys. 48, 697–702 (2010)

    Google Scholar 

  63. El-Afifi, E.M.; Hilal, M.A.; Attallah, M.F.; El-Reefy, S.A.: Characterization of phosphogypsum wastes associated with phosphoric acids and fertilizers production. J. Environ. Radioact. 100(5), 407–412 (2009)

    Article  Google Scholar 

  64. Al-Jundi, J.; Al-Ahmad, N.; Shehadeh, H.; Afaneh, F.; Maghrabi, M.; Gerstmann, U.; Hollriegl, V.; Oeh, U.: Investigation on the activity concentrations of 238U, 226Ra, 210Pb and 40K in Jordan phosphogypsum and fertilizers. Radiat. Prot. Dosim. 131(4), 449–454 (2008)

    Article  Google Scholar 

  65. Conceiçao, F.T.; Bonotto, D.M.: Radionuclide’s, heavy metals and fluorine incidence at Tapira phosphate rocks, Brazil, and their by-products. Environ. Pollut. 139, 232–243 (2006)

    Article  Google Scholar 

  66. Azouazi, M.; Ouahidi, Y.; Fakhi, S.; Andres, Y.; Abbe, JCh, Benmansour, M.: Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. J. Environ. Radioact. 54, 231–242 (2001)

    Article  Google Scholar 

  67. Khater, A.E.; Higgy, R.H.; Pimpl, M.: Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposits. Egypt. J. Environ. Radioact. 55(3), 255–267 (2001)

    Article  Google Scholar 

  68. Banzi, F.P.; Kifanga, L.D.; Bundala, F.M.: Natural radioactivity and radiation exposure at the Mining phosphate mine in Tanzania. J. Radiol. Prot. 20, 41–51 (2000)

    Article  Google Scholar 

  69. Burnett, W.C.; Hull, C.D.: Problems and possible remedies concerning NORM in by-product gypsum produced by the phosphate industry. In: Health Physics Society Meeting, Scottsdale, USA (1996)

  70. Attar, L.A.; Al-Oudat, M.; Kanakri, S.; Budeir, Y.; Khalily, H.; Hamwi, A.A.: Intercomparing runs on reference materials. J. Environ. Manag. 92, 2151–2158 (2011)

    Article  Google Scholar 

  71. Olszewska, W.M.: Estimates of the occupational radiological hazard in phosphate fertilizers industry in Poland. Radiat. Prot. Dosim. 58, 269–276 (1995)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR), King Abdul-Aziz University, Jeddah, under Grant No. (DG-002-135-1442). The authors, therefore, gratefully acknowledge the DSR for technical and financial support. The author also dedicates the Reward of this publication to her deceased mother, “Khurshid Mehboob.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Mehboob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehboob, K., Alzahrani, Y.A., Fallatah, O. et al. Radioactivity and Radiation Hazard Indices Assessment for Phosphate Rock Samples from Al-Jalamid, Turaif, Umm Wu’al, and As-Sanam, Saudi Arabia. Arab J Sci Eng 46, 779–792 (2021). https://doi.org/10.1007/s13369-020-04929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04929-1

Keywords

Navigation