Skip to main content
Log in

Influence of Hydrolysis Time on Properties of SiO2 Aerogels Prepared by Ambient Pressure Drying

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

With ethyl orthosilicate as precursor and trimethylchlorosilane as surface modifier, hydrophobic SiO2 aerogels are prepared through sol–gel process combined with ambient pressure drying process. The influence law of different hydrolysis times on microstructure and physicochemical properties of aerogels when the reaction precursor is in the sol phase is studied. The results show that the hydrolysis time increases from 6 to 36 h, and the prepared aerogels have nanoscale mesoporous structure and hydrophobic properties. With the increase in hydrolysis time, the porosity and specific surface area of the samples increase and then decrease, and the density decreases and then increases, all of which reach their peaks at 18 h. The properties of samples are optimal after being hydrolyzed for 18 h. The prosperity is 96%, specific area is 1539.7706 m2/g, the density is 0.08921 g/cm3, and the contact angle is 148.3°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cuce, E.; Cuce, P.; Wood, C.; et al.: Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Energy Rev. 34, 273–299 (2014)

    Google Scholar 

  2. CunhaJ, P.D.; Neves, F.; Lopes, M.; et al.: On the reconstruction of Cherenkov rings from aerogel radiators. Nucl. Instrum. Methods 452, 401–421 (2000)

    Google Scholar 

  3. Gibiat, V.; Lefeuvre, O.; Woignier, T.; et al.: Acoustic properties and potential applications of silica aerogels. J. Non-Cryst. Solids 186, 244–255 (1995)

    Google Scholar 

  4. Maleki, H.; Duraes, L.; Portugal, A.: An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids 385, 55–74 (2014)

    Google Scholar 

  5. Meng, J.; Li, J.; Shi, Y.: Research progress of drying technology of SiO2 aerogels. Sci. Technol. Chem. Ind. 24(2), 73–77 (2016)

    Google Scholar 

  6. Iswar, S.; Malfait, W.J.; Balog, S.; et al.: Effect of aging on silica aerogel properties. Micropor Mesopor Mater. 241, 293–302 (2017)

    Google Scholar 

  7. Bhagat, S.D.; Rao, A.V.: Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process. Appl. Surf. Sci. 252, 4289–4297 (2006)

    Google Scholar 

  8. Liu, Y.; Zhang, Y.; Li, D.X.: Preparation of hydrophobic silica aerogels by ambitient pressure drying method. Funct. Mater. 5, 5132–5135 (2015)

    Google Scholar 

  9. Liu, J.X.; Leng, X.W.; Shi, F.; et al.: Microstructure and properties of TiO2-SiO2 composite aerogels prepared via the ambient pressure drying. J. Chin. Ceram. Soc. 38(12), 2296–2302 (2010)

    Google Scholar 

  10. Chen, Y.M.; Zhao, D.F.; Xie, K.: Effect of preparation conditions on structure and properties of hydrophobic SiO2 aerogel. J. Chin. Ceram. Soc. 33(6), 727–731 (2005)

    Google Scholar 

  11. Luo, F.Z.; Wu, G.Y.; Shao, Z.D.: Effects of preparation conditions on hydrophobic silica aerogels via ambient pressure drying. J. Mater. Eng. 3, 32–37 (2012)

    Google Scholar 

  12. Zhu, J.; Guo, S.; Li, X.: Facile preparation of a SiO2–Al2O3 aerogel using coal gangue as a raw material via an ambient pressure drying method and its application in organic solvent adsorption. RSC Adv. 5, 103656–103661 (2015)

    Google Scholar 

  13. Sarawade, P.B.; Kim, J.; Kim, H.; et al.: High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl. Surf. Sci. 254, 574–579 (2007)

    Google Scholar 

  14. Zheng, D.M.; Qu, H.N.; Ma, C.C.: Study on preparation of silica sol by modified silicon dissolution method. Bull. Chin. Ceram. Soc. 4, 80–84 (2010)

    Google Scholar 

  15. Bhagat, S.D.; Kim, Y.; Ahn, Y.; et al.: Textural properties of ambient pressure dried water-glass based silica aerogel beads: one day synthesis. Micropor Mesopor Mater. 96, 237–244 (2006)

    Google Scholar 

  16. Zhou, L.: The 2nd Pacific Basin adsorption science and Technology Conference. International Academic Trends. (4), 52 (2001)

  17. Yan, J.M.; Zhang, Q.Y.: Adsorption and Agglomeration Solid Surfaces and Holes, 2nd edn. Science Press, Beijing (1986)

    Google Scholar 

  18. Kwon, Y.G.; Choi, S.Y.; Kang, E.S.; et al.: Ambient-dried silica aerogel doped with TiO2 powder for thermal insulation. J. Mater. Sci. 35(24), 6075 (2000)

    Google Scholar 

  19. Bommel, M.J.V.; Haan, A.B.D.: Drying of silica aerogel with supercritical carbon dioxide. J. Non-Cryst. Solids 186(2), 78 (1995)

    Google Scholar 

  20. Kartal, A.M.; Erkey, C.: Surface modification of silica aerogels by hexamethyldisilazane–carbon dioxide mixtures and their phase behavior. J. Supercrit. Fluids 53(1), 115 (2010)

    Google Scholar 

  21. Chen, Y.M.; Xie, K.; Zhao, D.F.; et al.: Preparation and hydrophobic modification of SiO2 aerogels. Aerospace Mater. Technol. 36(1), 30–33 (2006)

    Google Scholar 

  22. Yang, K.; Pang, JWWuBR; et al.: Methods of modification of SiO2 aerogels. Trans. Beijing Inst. Technol. 29(9), 833–837 (2009)

    Google Scholar 

  23. Zhu, J.; Yao, J.; Lv, X.: Synthesis and characterization of superhydrophobic mesoporous silica aerogels by ambient pressure drying. J. Chin. Ceram. Soc. 37(4), 512 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Shu, X., Xu, B. et al. Influence of Hydrolysis Time on Properties of SiO2 Aerogels Prepared by Ambient Pressure Drying. Arab J Sci Eng 46, 477–484 (2021). https://doi.org/10.1007/s13369-020-04912-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04912-w

Keywords

Navigation