Skip to main content

Advertisement

Log in

Small habitat matrix: How does it work?

  • Perspective
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

We present herein our perspective of a novel Small Habitats Matrix (SHM) concept showing how small habitats on private lands are untapped but can be valuable for mitigating ecological degradation. Grounded by the realities in Sabah, Malaysian Borneo, we model a discontinuous “stepping stones” linkage that includes both terrestrial and aquatic habitats to illustrate exactly how the SHM can be deployed. Taken together, the SHM is expected to optimize the meta-population vitality in monoculture landscapes for aerial, arboreal, terrestrial and aquatic wildlife communities. We also provide the tangible cost estimates and discuss how such a concept is both economically affordable and plausible to complement global conservation initiatives. By proposing a practical approach to conservation in the rapidly developing tropics, we present a perspective from “ground zero” that reaches out to fellow scientists, funders, activists and pro-environmental land owners who often ask, “What more can we do?”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abram, N.K. 2016. Trade-offs between ecosystem protection and oil palm development. London: RICS Research Trust, Royal Institution of Chartered Surveyors (RICS).

    Google Scholar 

  • Agostinho, A.A., L.C. Gomes, and M. Zalewski. 2001. The importance of floodplains for the dynamics of fish communities of the upper river Parana. Ecohydrology and Hydrobiology 1: 209–217.

    Google Scholar 

  • Alfred, R., A.H. Ahmad, J. Payne, C. Williams, L.N. Ambu, P.M. How, and B. Goossens. 2012. Home range and ranging behaviour of Bornean elephant (Elephas maximus borneensis) females. PLoS ONE 7: e31400. https://doi.org/10.1371/journal.pone.0031400.

    Article  CAS  Google Scholar 

  • Allan, J.D., and A.S. Flecker. 1993. Biodiversity conservation in running waters. BioScience 43: 32–43.

    Google Scholar 

  • Allan, J.R., J.E.M. Watson, M. Di Marco, C.J. O’Bryan, H.P. Possingham, S.C. Atkinson, and O. Venter. 2019. Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biology 17: e3000158. https://doi.org/10.1371/journal.pbio.3000158.

    Article  CAS  Google Scholar 

  • Amoros, C., and G. Bornette. 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology 47: 761–776. https://doi.org/10.1046/J.1365-2427.2002.00905.X.

    Article  Google Scholar 

  • Ancrenaz, M., R. Calaque, and I. Lackman. 2004. Orangutan nesting behavior in disturbed forest of Sabah, Malaysia: Implications for nest census. International Journal of Primatology 25: 983–1000.

    Google Scholar 

  • Ancrenaz, M., F. Oram, L.N. Ambu, I. Lackman, E. Ahmad, H. Elahan, H. Kler, N.K. Abram, et al. 2014a. Of Pongo, palms and perceptions: A multidisciplinary assessment of Bornean orang-utans Pongo pygmaeus in an oil palm context. Oryx 49: 465–472. https://doi.org/10.1017/S0030605313001270.

    Article  Google Scholar 

  • Ancrenaz, M., R. Sollmann, E. Meijaard, A.J. Hearn, J. Ross, H. Samekima, B. Loken, S.M. Cheyne, et al. 2014b. Coming down from the trees: Is terrestrial activity in Bornean orangutans natural or disturbance driven? Scientific Reports 4: 4024. https://doi.org/10.1038/srep04024.

    Article  CAS  Google Scholar 

  • Ancrenaz, M., E. Meijaard, S. Wich, and J. Simery. 2016. Palm oil paradox: Sustainable solutions to save the Great Apes, 2nd ed. Nairobi: UNEP/GRASP.

  • Azhar, B., D.B. Lindenmayer, J. Wood, J. Fischer, A. Manning, C. McElhinny, and M. Zakaria. 2011. The conservation value of oil palm plantation estates, small holdings and logged peat swamp forest for birds. Forest Ecology and Management 62: 2306–2315.

    Google Scholar 

  • Baillie, J., and Y. Zhang. 2018. Space for nature. Science 361: 1051.

    CAS  Google Scholar 

  • Balian, E.V., C. LéVeque, H. Segers, and K. Martens. 2008. The freshwater animal diversity assessment: An overview of the results. Hydrobiologia 595: 627–637.

    Google Scholar 

  • Beger, M., H.S. Grantham, R.L. Pressey, K.A. Wilson, E.L. Peterson, D. Dorfman, P.J. Mumby, R. Lourival, et al. 2010. Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biological Conservation 143: 565–575. https://doi.org/10.1016/j.biocon.2009.11.006.

    Article  Google Scholar 

  • Bennett, A.F., J.Q. Radford, and A. Haslem. 2006. Properties of land mosaics: Implications for nature conservation in agricultural environments. Biological Conservation 133: 250–264. https://doi.org/10.1016/j.biocon.2006.06.008.

    Article  Google Scholar 

  • Benton, T.G., J.A. Vickery, and J.D. Wilson. 2003. Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology & Evolution 18: 182–188.

    Google Scholar 

  • Berger, D., D.P. Chobanov, and F. Mayer. 2010. Interglacial refugia and range shifts of the alpine grasshopper Stenobothrus cotticus (Orthoptera: Acrididae: Gomphocerinae). Organisms Diversity & Evolution 10: 123–133. https://doi.org/10.1007/s13127-010-0004-4.

    Article  Google Scholar 

  • Berliani, K., H.S. Alikodra, B. Masy’ud, and M.D. Kusrini. 2018. Food preference of Sumatran elephant (Elephas maximus sumatranus) to commodity crops in human-elephant conflict area of Aceh, Indonesia. IOP Conference Series: Journal of Physics. https://doi.org/10.1088/1742-6596/1116/5/052015.

    Article  Google Scholar 

  • Bernard, H., E.L. Baking, A.J. Giordano, O.R. Wearn, and A.H. Ahmad. 2014. Terrestrial mammal species richness and composition in three small forest patches within an oil palm landscape in Sabah, Malaysian Borneo. Mammal Study 39: 141–154. https://doi.org/10.3106/041.039.0303.

    Article  Google Scholar 

  • Bernard, H., N. Joseph, E.L. Baking, T.S. Ean, Y. Tachiki, F. Oram, J.S.S. Seelan, and F.A.A. Khan. 2019. Animal use of rehabilitated formerly fire damaged peat-swamp forest in western Sabah, Malaysia. Raffles Bulletin of Zoology 67: 660–670.

    Google Scholar 

  • Bowne, D.R., and M.A. Bowers. 2004. Interpatch movements in spatially structured populations: A literature review. Landscape Ecology 19: 1–20.

    Google Scholar 

  • Brandi, C., T. Cabani, C. Hosang, S. Schirmbeck, L. Westermann, and H. Wiese. 2015. Sustainability standards for palm oil. The Journal of Environment & Development 24: 292–314. https://doi.org/10.1177/1070496515593775.

    Article  Google Scholar 

  • Brühl, C.A., and T. Eltz. 2010. Fuelling the biodiversity crisis: species loss of ground dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodiversity and Conservation 19: 519–529.

    Google Scholar 

  • Bunn, S.E., and A.H. Arthington. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Google Scholar 

  • Büscher, B., R. Fletcher, D. Brockington, C. Sandbrook, W.M. Adams, L. Campbell, C. Corson, W. Dressler, et al. 2016. Half-Earth or Whole Earth? Radical ideas for conservation, and their implications. Oryx 51: 407–410. https://doi.org/10.1017/s0030605316001228.

    Article  Google Scholar 

  • Business and Biodiversity Offset Programme. 2012. Standard on Biodiversity Offsets. http://bbop.foresttrends.org/pages/our_work_standard.

  • Campbell-Smith, G., M. Campbell-Smith, I. Singleton, and M. Linkie. 2011. Raiders of the lost bark: Orangutan foraging strategies in a degraded landscape. PLoS ONE 6: e20962. https://doi.org/10.1371/journal.pone.0020962.

    Article  CAS  Google Scholar 

  • Cantu-Salazar, L., and K.J. Gaston. 2010. Very large protected areas and their contribution to terrestrial biological conservation. BioScience 60: 808–818.

    Google Scholar 

  • Carbó-Ramírez, P., and I. Zuria. 2011. The value of small urban greenspaces for birds in a Mexican city. Landscape and Urban Planning 100: 213–222. https://doi.org/10.1016/j.landurbplan.2010.12.008.

    Article  Google Scholar 

  • Caryl, F.M., K. Thomson, and R. van der Ree. 2012. Permeability of the urban matrix to arboreal gliding mammals: Sugar gliders in Melbourne. Australia. Austral Ecology 38: 609–616. https://doi.org/10.1111/aec.12006.

    Article  Google Scholar 

  • Chapman, L.J., C.A. Chapman, and M. Chandler. 1996. Wetland ecotones as refugia for endangered fishes. Biological Conservation 78: 263–270.

    Google Scholar 

  • Choy S.C., S.A. Latif, and Y.N. Yung. 1996. Resource use in a freshwater fish community of a tropical rainforest stream in northern Borneo. In Tropical Rainforest ResearchCurrent Issues, Monographiae Biologicae, ed. D.S. Edwards, W.E. Booth, and S.C. Choy. Dordrecht, Springer.

  • Chung, A.Y.C., P. Eggleton, M.R. Speight, P.M. Hammnd, and V.K. Chey. 2000. The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bulletin of Entomological Research 90: 475–496.

    CAS  Google Scholar 

  • Covich, A.P., M.A. Palmer, and T.A. Crowl. 1999. The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience 49: 119–127. https://doi.org/10.2307/1313537.

    Article  Google Scholar 

  • Credit Suisse AG, World Wide Fund for Nature, and McKinsey & Company. 2014. Conservation Finance Moving beyond donor funding toward an investor-driven approach. https://www.cbd.int/financial/privatesector/g-private-wwf.pdf.

  • Da Fonseca, G.A.B., and J.G. Robinson. 1990. Forest size and structure: Competitive and predatory effects on small mammal communities. Biological Conservation 53: 265–294. https://doi.org/10.1016/0006-3207(90)90097-9.

    Article  Google Scholar 

  • Davies, A.B., M. Ancrenaz, F. Oram, and G.P. Asner. 2017. Canopy structure drives orangutan habitat selection in disturbed Bornean forests. Proceedings of the National academy of Sciences of the United States of America 114: 8307–8312. https://doi.org/10.1073/pnas.1706780114.

    Article  CAS  Google Scholar 

  • Davies, A.B., F. Oram, M. Ancrenaz, and G.P. Asner. 2019. Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests. Biological Conservation 232: 97–107. https://doi.org/10.1016/j.biocon.2019.01.032.

    Article  Google Scholar 

  • Dinerstein, E., D. Olson, A. Joshi, C. Vynne, N.D. Burgess, E. Wikramanayake, N. Hahn, S. Palminteri, et al. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67: 534–545. https://doi.org/10.1093/biosci/bix014.

    Article  Google Scholar 

  • Dinerstein, E., C. Vynne, E. Sala, A.R. Joshi, S. Fernando, T.E. Lovejoy, J. Mayorga, D. Olson, et al. 2019. A global deal for nature: Guiding principles, milestones, and targets. Science Advances 5: 2869. https://doi.org/10.1126/sciadv.aaw2869.

    Article  Google Scholar 

  • Drescher, M., and J.C. Brenner. 2018. The practice and promise of private land conservation. Ecology and Society 23: 3. https://doi.org/10.5751/es-10020-230203.

  • Duckworth, J.W., G. Batters, J.L. Belant, E.L. Bennett, J. Brunner, J. Burton, D. Challender, V. Cowling, et al. 2012. Why South-east Asia should be the world’s priority for averting imminent species extinctions, and a call to join a developing cross-institutional programme to tackle this urgent issue. Sapiens 5: 77–95.

    Google Scholar 

  • Dudgeon, D. 1992. Endangered ecosystems: a review of the conservation status of tropical Asian rivers. Hydrobiologia 248: 167–191.

    Google Scholar 

  • Emmons, L.H., and A.H. Gentry. 1983. Tropical forest structure and the distribution of gliding and prehensile-tailed vertebrates. American Naturalist 121: 513–524.

    Google Scholar 

  • English, M., G. Gillespie, M. Ancrenaz, S. Ismail, B. Goossens, S. Nathan, and W. Linklater. 2014. Plant selection and avoidance by the Bornean elephant (Elephas maximus borneensis) in tropical forest: Does plant recovery rate after herbivory influence food choices? Journal of Tropical Ecology 30: 371–379. https://doi.org/10.1017/S0266467414000157.

    Article  Google Scholar 

  • Escalera-Vázquez, L.G., and L. Zambrano. 2010. The effect of seasonal variation in abiotic factors on fish community structure in temporary and permanent pools in a tropical wetland. Freshwater Biology 55: 2557–2569. https://doi.org/10.1111/J.1365-2427.2010.02486.X.

    Article  Google Scholar 

  • Estes, J.G., N. Othman, S. Ismail, M. Ancrenaz, B. Goossens, L.N. Ambu, A.B. Estes, and P.A. Palmiotto. 2012. Quantity and configuration of available elephant habitat and related conservation concerns in the Lower Kinabatangan floodplain of Sabah, Malaysia. PLoS ONE 7: e44601. https://doi.org/10.1371/journal.pone.0044601.

    Article  CAS  Google Scholar 

  • Evans, L.J., B. Goossens, A.B. Davies, G. Reynolds, and G.P. Asner. 2020. Natural and anthropogenic drivers of Bornean elephant movement strategies. Global Ecology and Conservation 22: e00906. https://doi.org/10.1016/j.gecco.2020.e00906.

    Article  Google Scholar 

  • Fahrig, L. 2017. Ecological responses to habitat fragmentation per se. Annual Review of Ecology Evolution and Systematics 48: 1–23.

    Google Scholar 

  • Fahrig, L. 2020. Why do several small patches hold more species than few large patches? Global Ecology and Biogeography 29: 615–628. https://doi.org/10.1111/geb.13059.

    Article  Google Scholar 

  • Fahrig, L., J. Baudry, L. Brotons, F.G. Burel, T.O. Crist, R.J. Fuller, C. Sirami, G.M. Siriwardena, et al. 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters 14: 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x.

    Article  Google Scholar 

  • Faruk, A., D. Belabut, N. Ahmad, R.J. Knell, and T.W.J. Garner. 2013. Effects of oil-palm plantations on diversity of tropical anurans. Conservation Biology 27: 615–624.

    Google Scholar 

  • Ferreira, I.J.M., G.D.R. Bragion, J.H.D. Ferreira, E. Benedito, and E.V.D. Couto. 2019. Landscape pattern changes over 25 years across a hotspot zone in southern Brazil. Southern Forests: A Journal of Forest Science 81: 175–184. https://doi.org/10.2989/20702620.2018.1542563.

    Article  Google Scholar 

  • Filgueiras, B.K.C., M. Tabarelli, I.R. Leal, F.Z. Vaz-de- Mello, and L. Iannuzzi. 2015. Dung beetle persistence in human-modified landscapes: Combining indicator species with anthropogenic land use and fragmentation-related effects. Ecological Indicators 55: 65–73. https://doi.org/10.1016/j.ecolind.2015.02.032.

    Article  Google Scholar 

  • Fredriksson, G.M., S.A. Wich, and Trisno. 2006. Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biological Journal of the Linnean Society 89: 489–508.

    Google Scholar 

  • Furey, N.M., and P.A. Racey. 2016. Conservation Ecology of Cave Bats. In Bats in the anthropocene: Conservation of bats in a changing world, ed. C. Voigt and T. Kingston. Cham: Springer.

    Google Scholar 

  • Gallmetzer, N., and C.H. Schulze. 2015. Impact of oil palm agriculture on understory amphibians and reptiles: A Mesoamerican perspective. Global Ecology and Conservation 4: 95–109. https://doi.org/10.1016/j.gecco.2015.05.008.

    Article  Google Scholar 

  • Gaveau, D.L., D. Sheil, M.A. Salim, S. Arjasakusuma, M. Ancrenaz, P. Pacheco, and E. Meijaard. 2016. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Scientific Report 6: 32017.

    CAS  Google Scholar 

  • Giam, X., R.K. Hadiaty, H.H. Tan, L.R. Parenti, D. Wowor, S. Sauri, K.Y. Chong, D.C. Yeo, et al. 2015. Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia. Conservation Biology 29: 1357–1367. https://doi.org/10.1111/cobi.12483.

    Article  Google Scholar 

  • Gillespie, G.R., E. Ahmad, A. Evans, M. Ancrenaz, B. Goossens, and M. Scroggie. 2012. Relative value of secondary forests and non-forest habitats for amphibians in Borneo. Biology Conservation 152: 136–144.

    Google Scholar 

  • Gilroy, J.J., G.W. Prescott, J.S. Cardenas, P.G. Castañeda, A. Sánchez, L.E. Rojas-Murcia, C.A. Medina Uribe, T. Haugaasen, et al. 2014. Minimizing the biodiversity impact of Neotropical oil palm development. Global Change Biology 21: 1531–1540. https://doi.org/10.1111/gcb.12696.

    Article  Google Scholar 

  • Goossens, B., R. Sharma, N. Othman, C. Kun-Rodrigues, R. Sakong, M. Ancrenaz, L.N. Ambu, N.K. Jue, et al. 2016. Habitat fragmentation and genetic diversity in natural populations of the Bornean elephant: Implications for conservation. Biological Conservation 196: 80–92. https://doi.org/10.1016/j.biocon.2016.02.008.

    Article  Google Scholar 

  • Gray, P.A., D. Cheriton, and M. Gaetz. 2018. Comparing screening tools for assessment of potential ‘Other Effective Area-Based Conservation Measures’ in Ontario, Canada. Parks 24: 31–48.

    Google Scholar 

  • Gunderson, L.H. 2000. Ecological resilience in theory and application. Annual Review Ecology and Systematics 31: 425–439.

    Google Scholar 

  • Haufler, J. 2014. Where wildlife roams: Management on private, tribal, and communal lands. The Wildlife Professional: 18–19.

  • Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review Ecology and Systematics 4: 1–23.

    Google Scholar 

  • Hughes, A.C. 2017. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8: e01624. https://doi.org/10.1002/ecs2.1624.

    Article  Google Scholar 

  • IUCN-WCPA. 2017. Using case studies to enhance guidance on Other Effective Area based Conservation Measures: Report of the third meeting of the IUCN-WCPA Task Force on Other Effective Area-based Conservation Measures. Gland, Switzerland: IUCN.

    Google Scholar 

  • Ismail, A., M.A. Simeh, and M. Mohd Noor. 2003. The production cost of oil palm fresh fruit bunches: The case of independent smallholders in Johor. Oil Palm Industry Economic Journal 3.

  • Jonas, H.D., E. Lee, H.C. Jonas, C. Matallana-Tobon, K.S. Wright, F. Nelson, and E. Enns. 2017. Will Other Effective Area-Based Conservation Measures’ increase recognition and support for ICCAs? Parks 23: 63–78. https://doi.org/10.2305/IUCN.CH.2017.PARKS-23-2HDJ.en.

    Article  Google Scholar 

  • JPMorgan Chase, EKO Asset Management Partners, and The Nature Conservancy. 2014. Investing in conservation: A landscape assessment of an emerging market. https://www.jpmorganchase.com/corporate/Corporate-Responsibility/document/InvestingInConservation_Report_r2.pdf.

  • Junk, W.J. 1999. The flood pulse concept of large rivers: learning from the tropics. Archiv fur Hydrobiologie 115: 261–280.

    Google Scholar 

  • Junk, W.J., and K.M. Wantzen. 2007. Flood pulsing and the development and maintenance of biodiversity in floodplains. Ecology of Freshwater and Estuarine Wetlands, 407–435. Berkeley: University of California Press. 10.1525/california/9780520247772.0.

  • Kelm, K., T. Burns, and J. Kunicova. 2017. Enhancing public sector performance: Malaysia’s experience with transforming land administration. Tanzania: Governance Global Practice, World Bank Group.

    Google Scholar 

  • Khazan, E.S. 2014. Tests of biological corridor efficacy for conservation of a Neotropical giant damselfly. Biological Conservation 177: 117–125. https://doi.org/10.1016/j.biocon.2014.06.006.

    Article  Google Scholar 

  • Koh, L.P., C.J. Kettle, D. Sheil, T.M. Lee, X. Giam, L. Gibson, and G.R. Clements. 2013. Biodiversity state and trends in Southeast Asia. In Encyclopedia of Biodiversity, 509–527. Elsevier, San Diego. 10.1016/b978-0-12-384719-5.00357-9.

  • Koschorreck, M., A.S. Downing, J. Hejzlar, R. Marcé, A. Laas, W.G. Arndt, P.S. Keller, A.J.P. Smolders, et al. 2019. Hidden treasures: Human-made aquatic ecosystems harbour unexplored opportunities. Ambio. https://doi.org/10.1007/s13280-019-01199-6.

    Article  Google Scholar 

  • Krewenka, K.M., A. Holzschuh, T. Tscharntke, and C.F. Dormann. 2011. Landscape elementsas potential barriers and corridors for bees, wasps and parasitoids. Biological Conservation 144: 1816–1825. https://doi.org/10.1016/j.biocon.2011.03.014.

    Article  Google Scholar 

  • Law, B.S., and C.R. Dickman. 1998. The use of habitat mosaics by terrestrial vertebrate fauna: Implications for conservation and management. Biodiversity and Conservation 7: 323–333. https://doi.org/10.1023/a:1008877611726.

    Article  Google Scholar 

  • Leadley, P.W., C.B. Krug, R. Alkemade, H.M. Pereira, U.R. Sumaila, M. Walpole, A. Marques, T. Newbold, et al. 2014. Progress towards the Aichi Biodiversity Targets: An assessment of biodiversity trends, policy scenarios and key actions. Montreal, Canada: Secretariat of the Convention on Biological Diversity.

    Google Scholar 

  • Ledford, H. 2012. Alternative funding: Sponsor my science. Nature 481: 254–255.

    CAS  Google Scholar 

  • Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15: 237–240.

    Google Scholar 

  • Locke, H. 2013. Nature Needs Half: A necessary and hopeful new agenda for protected areas. Parks 19: 9–18.

    Google Scholar 

  • Loucks, O.L. 1970. Evolution of diversity, efficiency and community stability. American Zoologist 10: 17–25.

    CAS  Google Scholar 

  • Love, K., D.J. Kurz, I.P. Vaughan, A. Ke, L.J. Evans, and B. Goossens. 2018. Bearded pig (Sus barbatus) utilisation of a fragmented forest-oil palm landscape in Sabah, Malaysian Borneo. Wildlife Research. https://doi.org/10.1071/WR16189.

    Article  Google Scholar 

  • Lucey, J.M., and J.K. Hill. 2012. Spillover of insects from rain forest into adjacent oil palm plantations. Biotropica 44: 368–377. https://doi.org/10.1111/j.1744-7429.2011.00824.x.

    Article  Google Scholar 

  • Lucey, J.M., G. Palmer, K.L. Yeong, D.P. Edwards, M.J.M. Senior, S.A. Scriven, G. Reynolds, and J.K. Hill. 2017. Reframing the evidence base for policy-relevance to increase impact: A case study on forest fragmentation in the oil palm sector. Journal of Applied Ecology 54: 731–736. https://doi.org/10.1111/1365-2664.12845.

    Article  Google Scholar 

  • Lynch, A.J. 2018. Creating effective urban greenways and stepping-stones. Journal of Planning Literature. https://doi.org/10.1177/088541221879833.

    Article  Google Scholar 

  • MacArthur, R.H., and E.O. Wilson. 1963. An equilibrium theory of insular zoogeography. Evolution 17: 373–387.

    Google Scholar 

  • Mahoney, S.P., P. Vahldiek, and C.E. Soulliere. 2015. Private land: Conservation’s new frontier in America. International Journal of Environmental Studies 72: 869–878. https://doi.org/10.1080/00207233.2015.1032047.

    Article  Google Scholar 

  • Malaysian Palm Oil Board. 2019. MPOB daily FFB reference price by region. Retrieved 12 October, 2019, from http://bepi.mpob.gov.my/admin2/price_ffb_region_view2.php.

  • McCarthy, M.S., J.D. Lester, and C.B. Stanford. 2016. Chimpanzees (Pan troglodytes) flexibly use introduced species for nesting and bark feeding in a human-dominated habitat. International Journal of Primatology 38: 321–337. https://doi.org/10.1007/s10764-016-9916-y.

    Article  Google Scholar 

  • Meijaard, E., G. Albar, Y. Nardiyono, M.Ancrenaz Rayadin, and S. Spehar. 2010. Unexpected ecological resilience in Bornean orangutans and implications for pulp and paper plantation management. PLoS ONE 5: e12813. https://doi.org/10.1371/journal.pone.0012813.

    Article  CAS  Google Scholar 

  • Mills, E.C., J.R. Poulsen, J.M. Fay, P. Morkel, C.J. Clark, A. Meier, C. Beirne, and L.J.T. White. 2018. Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon. PLoS ONE 3: e0199387. https://doi.org/10.1371/journal.pone.0199387.

    Article  CAS  Google Scholar 

  • Ministry of Primary Industries, Malaysia. 2016. Average monthly FFB yield of oil palm estates in 2016. Retrieved June 23, 2019, from http://www.data.gov.my/data/en_US/dataset/malaysia-average-monthly-ffb-yield-of-oil-palm-estates-in-2016.

  • Mitchell, B., S. Stolton, J. Bezaury-Creel, H.C. Bingham, T.L. Cumming, N. Dudley, J.A. Fitzsimons, D. Malleret-King, et al. 2018a. Guidelines for privately protected areas. Best Practice Protected Area Guidelines Series No. 29. Gland, Switzerland.

  • Mitchell, B., J.A. Fitzsimons, C.M.D. Stevens, and D.R. Wright. 2018b. PPA or OECM? Differentiating between privately protected areas and other effective area-based conservation measures on private land. Parks. https://doi.org/10.2305/IUCN.CH.2018.PARKS-24-SIBAM.en.

    Article  Google Scholar 

  • Mittermeier, R.A., W.R. Turner, F.W. Larsen, T.M. Brooks, and C. Gascon. 2011. Global biodiversity conservation: The critical role of hotspots. In Biodiversity hotspots. Springer: Berlin.

  • Morgans, C.L., E. Meijaard, T. Santika, E. Law, S. Budiharta, M. Ancrenaz, and K.A. Wilson. 2018. Evaluating the effectiveness of palm oil certification in delivering multiple sustainability objectives. Environmental Research Letters 13: 064032. https://doi.org/10.1088/1748-9326/aac6f4.

    Article  Google Scholar 

  • Moritsch, M.M., M.J. Pakes, and D.R. Lindberg. 2014. How might sea level change affect arthropod biodiversity in anchialine caves: a comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea). Organisms Diversity & Evolution 14: 225. https://doi.org/10.1007/s13127-014-0167-5.

    Article  Google Scholar 

  • Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. Da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 83–858.

    Google Scholar 

  • Naidoo, R., L.C. Weaver, R.W. Diggle, G. Matongo, G. Stuart-Hill, and C. Thouless. 2016. Complementary benefits of tourism and hunting to communal conservancies in Namibia. Conservation Biology 30: 628–638.

    Google Scholar 

  • Nájera, A., and J. Simonetti. 2010. Can oil palm plantations become bird friendly? Agroforestry Systems. https://doi.org/10.1007/s10457-010-9278-y.

    Article  Google Scholar 

  • Nakashima, Y., M. Nakabayashi, and J.A. Sukor. 2013. Space use, habitat selection, and day-beds of the common palm civet (Paradoxurus hermaphroditus) in human-modified habitats in Sabah, Borneo. Journal of Mammalogy 94: 1169–1178. https://doi.org/10.1644/12-MAMM-A-140.1.

    Article  Google Scholar 

  • Newmark, W.D., C.N. Jenkins, S.L. Pimm, P.B. McNeally, and J.M. Halley. 2017. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proceedings of the National academy of Sciences of the United States of America 114: 9635–9640. https://doi.org/10.1073/pnas.1705834114.

    Article  CAS  Google Scholar 

  • Ng, C.K.C., P.A.C. Ooi, W.L. Wong, and G. Khoo. 2019. Adaptation of an assessment system for establishing a River Physical Quality Index (RPQI) and testing its effectiveness with fish-based metrics in Malaysia. River Research and Application. https://doi.org/10.1002/rra.3528.

    Article  Google Scholar 

  • Ng, C.K.C., F. Abdullah, H. Biun, M.K. Ibrahim, S. Mustapha, and A. Sade. 2017. A working checklist of the freshwater fish diversity for habitat management and conservation work in Sabah, Malaysia, North Borneo. Biodiversitas 18: 560–574. https://doi.org/10.13057/biodiv/d180217.

  • Noss, R. 1991. Landscape connectivity: different function at different scales, US. In Landscape linkages and biodiversity: Defenders of wildlife. Washington DC: Island Press.

  • Othman, N., B. Goossens, C.P.I. Cheah, S. Nathan, R. Bumpus, and M. Ancrenaz. 2019. Shift of paradigm needed towards improving humanelephant coexistence in monoculture landscapes in Sabah. International Zoo Yearbook. 10.1111/izy.12226.

  • Oram, F. 2018. Abundance, behavioural and feeding ecology of wild orangutans (Pongo pygmaeus morio) in the fragmented forests of the Kinabatangan floodplain. Ph.D. Thesis. Sabah, Malaysia: Universiti Malaysia Sabah.

  • Paoletti, A., K. Darras, H. Jayanto, I. Grass, M. Kusrini, and T. Tscharntke. 2018. Amphibian and reptile communities of upland and riparian sites across Indonesian oil palm, rubber and forest. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2018.e00492.

    Article  Google Scholar 

  • Payne, J. 1988. Orangutan conservation in Sabah. Kuala Lumpur: World Wide Fund for Nature.

    Google Scholar 

  • Payne, J. 1992. Rarity and extinctions of large mammals in Malaysian rainforests. Malayan Nature Journal 45: 310–320.

    Google Scholar 

  • Payne, J., and G. Davies. 2013. Conservation of rain forest mammals in Sabah: Long term perspectives. The Raffles Bulletin of Zoology 29: 187–201.

    Google Scholar 

  • Payne, J., J. Nais, and L. Ambu. 2007. Application of IUCN categories for protected areas in Sabah. Malaysia: WWF-Malaysia, Sabah Parks and Sabah Wildlife Department.

    Google Scholar 

  • Pickett, S.T.A., and J.N. Thompson. 1978. Patch dynamics and the design of nature reserves. Biological Conservation 13: 27–37. https://doi.org/10.1016/0006-3207(78)90016-2.

    Article  Google Scholar 

  • Pimm, S.L., C.N. Jenkins, and B.V. Li. 2018. How to protect half of Earth to ensure it protects sufficient biodiversity. Science Advances 4: eaat2616. https://doi.org/10.1126/sciadv.aat2616.

    Article  Google Scholar 

  • Prugh, L.R., K.E. Hodges, R.E. Sinclair, and J.S. Brashares. 2008. Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National academy of Sciences of the United States of America 105: 20770–20775.

    CAS  Google Scholar 

  • Reid, A.J., A.K. Carlson, I.F. Creed, E.J. Eliason, P.A. Gell, P.T.J. Johnson, K.A. Kidd, T.J. MacComack, et al. 2018. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849–873. https://doi.org/10.1111/brv.12480.

    Article  Google Scholar 

  • Reynolds, C. 2006. Benthic ecology. In Encyclopedia of environmetrics, 2nd ed. West Lafayette: Wiley. https://doi.org/10.1002/9780470057339.vab010.

  • Rodrigues, A.S.L., and K.J. Gaston. 2001. How large do reserve networks need to be? Ecology Letters 4: 602–609. https://doi.org/10.1046/j.1461-0248.2001.00275.x.

    Article  Google Scholar 

  • Rosa, I.M.D., M.J. Smith, O.R. Wearn, D. Purves, and R.M. Ewers. 2016. The environmental legacy of modern tropical deforestation. Current Biology 26: 2161–2166.

    CAS  Google Scholar 

  • Rosa, J.F., M. Ramalho, D. Monteiro, and M.D. e Silva. 2015. Permeability of matrices of agricultural crops to Euglossina bees (Hymenoptera, Apidae) in the Atlantic Rain Forest. Apidologie 46: 691–702. https://doi.org/10.1007/s13592-015-0359-9.

    Article  Google Scholar 

  • Roundtable on Sustainable Palm Oil. 2010. RSPO Standard for Group Certification. Retrieved November 3, 2019, from https://www.rspo.org/file/RSPO%20Standard%20for%20Group%20Certification%20-%20July%202010%20FINAL.pdf.

  • Ruiz-Sanchez, E., F. Rodriguez-Gomez, and V. Sosa. 2012. Refugia and geographic barriers of populations of the desert poppy, Hunnemannia fumariifolia (Papaveraceae). Organisms Diversity & Evolution 12: 133–143. https://doi.org/10.1007/s13127-012-0089-z.

    Article  Google Scholar 

  • Ruppert, N., A. Holzner, K.W. See, A. Gisbrecht, and A. Beck. 2018. Activity budgets and habitat use of wild southern pig-tailed macaques (Macaca nemestrina) in oil palm plantation and forest. International Journal of Primatology 39: 237–251. https://doi.org/10.1007/s10764-018-0032-z.

    Article  Google Scholar 

  • Rybicki, J., and I. Hanski. 2013. Species-area relationships and extinctions caused by habitat loss and fragmentation. Ecology Letters 16: 27–38. https://doi.org/10.1111/ele.12065.

    Article  Google Scholar 

  • Sabah Forestry Department. 2018. Statistic of forest reserves and totally protected areas in Sabah. Sandakan: Sabah Forestry Department.

    Google Scholar 

  • Santika, T., M. Ancrenaz, K.A. Wilson, S. Spehar, N. Abram, G.L. Banes, G. Campbell-Smith, L. Curran, et al. 2017. First integrative trend analysis for a great ape species in Borneo. Scientific Reports. https://doi.org/10.1038/s41598-017-04435-9.

    Article  Google Scholar 

  • Saura, S., Ö. Bodin, and M.-J. Fortin. 2013. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. Journal of Applied Ecology 51: 171–182. https://doi.org/10.1111/1365-2664.12179.

    Article  Google Scholar 

  • Sayer, J. 2009. Reconciling conservation and development: Are landscapes the answer? Biotropica 41: 649–652. https://doi.org/10.1111/j.1744-7429.2009.00575.x.

    Article  Google Scholar 

  • Scriven, S.A., G.R. Gillespie, S. Laimun, and B. Goossens. 2018. Edge effects of oil palm plantations on tropical anuran communities in Borneo. Biological Conservation 220: 37–49. https://doi.org/10.1016/j.biocon.2018.02.006.

    Article  Google Scholar 

  • Simon, D., G. Davies, and M. Ancrenaz. 2019. Changes to Sabah’s orangutan population in recent times: 2002–2017. PLoS ONE 14: e0218819. https://doi.org/10.1371/journal.pone.0218819.

    Article  CAS  Google Scholar 

  • Sodhi, N.S., M.R.C. Posa, T.M. Lee, D. Bickford, L.P. Koh, and B.W. Brook. 2010. The state and conservation of Southeast Asian biodiversity. Biodiversity and Conservation 19: 317–328.

    Google Scholar 

  • Spehar, S.N., and Y. Rayadin. 2017. Habitat use of Bornean orangutans (Pongo pygmaeus morio) in an industrial forestry plantation in East Kalimantan, Indonesia. International Journal of Primatology 38: 358–384. https://doi.org/10.1007/s10764-017-9959-8.

    Article  Google Scholar 

  • Strayer, D.L., and D. Dudgeon. 2010. Freshwater biodiversity conservation: Recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358. https://doi.org/10.1899/08-171.1.

    Article  Google Scholar 

  • Struebig, M.J., M. Fischer, D.L.A. Gaveau, E. Meijaard, S.A. Wich, C, Gonner, R. Sykes, A. Wilting, et al. 2015. Anticipated climate and land-cover changes reveal refuge areas for Borneo’s orang-utans. Global Change Biology 21: 2891–2904. https://doi.org/10.1111/gcb.12814.

    Article  Google Scholar 

  • Thomaz, S.M., L.M. Bini, and R.L. Bozelli. 2007. Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579: 1–13. https://doi.org/10.1007/S10750-006-0285-Y.

    Article  Google Scholar 

  • Tomadon, L.D.S., G.A. Dettke, M.G. Caxambu, I.J.M. Ferreira, and E.V.D. Couto. 2019. Significance of forest fragments for conservation of endangered vascular plant species in southern Brazil hotspots. Écoscience 26: 221–235. https://doi.org/10.1080/11956860.2019.1598644.

    Article  Google Scholar 

  • Tscharntke, T., I. Steffan-Dewenter, A. Kruess, and C. Thies. 2002. Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecological Applications 12: 354–363. https://doi.org/10.1890/1051-0761(2002)012%5b0354:COSHFT%5d2.0.CO;2.

    Article  Google Scholar 

  • Turner, I.M., and R.T. Corlett. 1996. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends in Ecology & Evolution 11: 330–333. https://doi.org/10.1016/0169-5347(96)10046-X.

    Article  CAS  Google Scholar 

  • Uezu, A., D.D. Beyer, and J.P. Metzger. 2008. Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodiversity Conservation 17: 1907–1922. https://doi.org/10.1007/s10531-008-9329-0.

    Article  Google Scholar 

  • Van Paddenburg, A., A. Bassi, E. Buter, C. Cosslett, and A. Dean. 2012. Heart of Borneo: Investing in nature for a green economy. Jakarta: WWF Heart of Borneo Global Initiative.

    Google Scholar 

  • Villaseñor, N.R., D.A. Driscoll, P. Gibbons, A.J.K. Calhoun, and D.B. Lindenmayer. 2017. The relative importance of aquatic and terrestrial variables for frogs in an urbanizing landscape: Key insights for sustainable urban development. Landscape and Urban Planning 157: 26–35. https://doi.org/10.1016/j.landurbplan.2016.06.006.

    Article  Google Scholar 

  • Volenec, Z.M., and A.P. Dobson. 2020. Conservation value of small reserves. Conservation Biology 34: 66–79.

    Google Scholar 

  • Wang, T., M. Fujiwara, X. Gao, and H. Liu. 2019. Minimum viable population size and population growth rate of freshwater fishes and their relationships with life history traits. Scientific Reports. https://doi.org/10.1038/s41598-019-40340-z.

    Article  Google Scholar 

  • Wicke, B., R. Sikkema, V. Dornburg, and A. Faaij. 2011. Exploring land use changes and the role of palm oil production in Indonesia and Malaysia. Land Use Policy 28: 193–206. https://doi.org/10.1016/j.landusepol.2010.06.00.

    Article  Google Scholar 

  • Wikramanayake, E., A. Manandhar, S. Bajimaya, S. Nepal, G. Thapa, and K. Thapa. 2010. The Terai Arc Landscape: A tiger conservation success story in a human-dominated landscape. In Tigers of the World: The science, politics, and conservation of Panthera tigris, 2nd ed. Academic Press, Elsevier.

  • Wilcove, D.S., X. Giam, D.P. Edwards, B. Fisher, and L.P. Koh. 2013. Navjot’s nightmare revisited: Logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology & Evolution 28: 531–540. https://doi.org/10.1016/j.tree.2013.04.005.

    Article  Google Scholar 

  • Wilson, E.O. 2016. Half-earth: Our planet’s fight for life. New York: Liveright.

    Google Scholar 

  • Wilson, K., N.K. Abram, P. Chin, C. Ong, E. Latik, H.H. Jitilon, M. Ramlan, N. Amat Nor, et al. 2018. Smallholder readiness for Roundtable on Sustainable Palm Oil (RSPO) jurisdictional certification of palm oil by 2025: Results from field studies in Sabah’s Telupid, Tongod, Beluran and Kinabatangan Districts. Kota Kinabalu: Forever Sabah.

    Google Scholar 

  • Wong, S.T., C. Servheen, L. Ambu, and A. Norhayati. 2005. Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. Journal of Tropical Ecology 21: 627–639.

    Google Scholar 

  • Xi, W., R.K. Peet, M.T. Lee, and D.L. Urban. 2019. Hurricane disturbances, tree diversity, and succession in North Carolina Piedmont forests, USA. Journal of Forestry Research 30: 219. https://doi.org/10.1007/s11676-018-0813-4.

    Article  Google Scholar 

  • Yong, D.L., A. Jain, Y. Liu, M. Iqbal, C.Y. Choi, N.J. Crockford, S. Millington, and J. Provencher. 2018. Challenges and opportunities for transboundary conservation of migratory birds in the East Asian-Australasian flyway. Conservation Biology 32: 740–743. https://doi.org/10.1111/cobi.13041.

    Article  Google Scholar 

  • Zhang, Q., Y. Hong, F. Zou, M. Zhang, T.M. Lee, X. Song, and J. Rao. 2016. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications. Scientific Reports. https://doi.org/10.1038/srep22344.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Enroe Soudi for image in Fig. 1 and four anonymous reviewers who have provided thoughtful comments and suggestions that helped to improve the paper. We declare that we have no competing interests and this work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casey Keat-Chuan Ng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, C.KC., Payne, J. & Oram, F. Small habitat matrix: How does it work?. Ambio 50, 601–614 (2021). https://doi.org/10.1007/s13280-020-01384-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-020-01384-y

Keywords

Navigation