Skip to main content
Log in

Influence of filtration heat transfer on parameters and conditions for ignition of coal-water fuel particles

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The paper describes a theoretical study on the influence of filtration of a mixture of gaseous products of pyrolysis and water vapor on the dynamic of ignition of coal-water fuel particles under conditions of high temperature heating. The developed mathematical model offers simulation of the process of ignition of coal-water fuel droplets under conditions close to the furnace space (characterized by intense radiation-convective heating) in typical boilers. Comparisons of experimental data (found previously) and simulation data on the ignition delay time (tign) demonstrate good compliance. Simulation results show that filtration of water vapor and volatiles is a significant factor (influence up to 40 %) affecting the characteristics and conditions of ignition of coal-water fuel droplets. The higher velocity of the vapor-gas mixture flow through the porous structure of the fuel particle results in a longer ignition delay. The effect of using the “simplified” model of filtration heat transfer on the prognostic estimates of coal-water fuel ignition is analyzed. It is demonstrated that using of rather simple models for filtration heat transfer does not bring any significant errors in calculating the ignition delay time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Longwell, E.S. Rubin, and J. Wilson, Coal: energy for the future, Progress in Energy and Combustion Sci., 1995, Vol. 21, No. 4 P. 269–360.

    Article  Google Scholar 

  2. E.G. Gorlov, Composite water-containing fuels from coals and petroleum products, Solid Fuel Chemistry, 2004, Vol. 38, No. 6 P. 40–50.

    Google Scholar 

  3. S.V. Syrodoy, G.V. Kuznetsov, N.Y. Gutareva, and V.V. Salomatov, The efficiency of heat transfer through the ash deposits on the heat exchange surfaces by burning coal and coal-water fuels, J. Energy Institute, 2018, Vol. 91, P. 1091–1101.

    Article  Google Scholar 

  4. Y. Zhang, Y. Bo, Y. Wu, X. Wu, Z Huang, J. Zhou, and K Cen, Flow behavior of high-temperature flue gas in the heat transfer chamber of a pilot-scale coal-water slurry combustion furnace, Particuology, 2014, Vol. 17, P. 114–124.

    Article  ADS  Google Scholar 

  5. J. Liu, R. Wang, J. Xi, J. Zhou, and K Cen, Pilot-scale investigation on slurrying, combustion, and slagging characteristics of coal slurry fuel prepared using industrial waste liquid, Applied Energy, 2014, Vol. 115, P. 309–319.

    Article  Google Scholar 

  6. S.M. Waqas, A.S. Fattah, M.K. Raza, Coal water slurry in energy sector, Int. Conf. on Engng Sci. Institute of Chemical Engineering & Technology, University of Punjab, 2012, P. 1–6.

  7. Z Huang, C. Qin, and G. Gao, Theoretical analysis on CWM drop combustion history, Proc. 8-th Symp. (Inter.) Coal Slurry Fuels Preparation and Utilization. Pt. 1. USA, Orlando, 1986, P. 343–358.

  8. K.J. Matthews and A.R. Jones, The effect of coal composition on coal-water slurry combustion and ash deposition characteristics, in: Proc. 8th Int. Symp. Coal Slurry Fuels Preparation and Utilization. Pt. 1. USA, Orlando, 1986, P. 388–407.

  9. A. Kijo-Kleczkowska, Combustion of coal-water suspensions, Fuel, 2011, Vol. 90, P. 865–877.

    Article  Google Scholar 

  10. T. Kolb, W.F. Farmayan, P.M. Walsh, and J.M. Beer, The contribution of radiation to the ignition of a confined turbulent coal-water slurry diffusion flame, Combustion Sci. and Technology, 1988, Vol. 58, P. 77–95.

    Article  Google Scholar 

  11. M. Muto, K. Yuasa, and R. Kurose, Numerical simulation of ignition in pulverized coal combustion with detailed chemical reaction mechanism, Fuel, 2017, Vol. 190, P. 136–144.

    Article  Google Scholar 

  12. V.V. Salomatov and I.V. Kravchenko, Theoretical study of the combustion of coal-water fuel droplets. Part I: Heating step, Gorenie i Plasmokhimiya, 2007, Vol. 5, No. 3, P. 178–188.

    Google Scholar 

  13. V.V. Salomatov and I.V. Kravchenko, Theoretical study of the combustion of coal-water fuel droplets. Part II: Evaporation step, Gorenie i Plasmokhimiya, 2007, Vol. 5, No. 3, P. 189–198.

    Google Scholar 

  14. V.V. Salomatov and I.V. Kravchenko, Theoretical study of the combustion of coal-water fuel droplets. Part III: Ignition step, Gorenie i Plasmokhimiya, 2008, Vol. 6, No. 1 P. 56–59.

    Google Scholar 

  15. V.V. Salomatov and I.V. Kravchenko, Theoretical study of the combustion of coal-water fuel droplets. Part IV: Combustion step, Gorenie i Plasmokhimiya, 2008, Vol. 6, No. 3 P. 171–178.

    Google Scholar 

  16. V.V. Salomatov, S.V. Syrodoy, and N.Y. Gutareva, Modelling of heat and mass transfer to solve the problem of particle ignition water-coal fuel, IOP Conf. Series: Materials Sci. and Engng, 2014, Vol. 66, P. 012040–1–012040–7.

    Article  Google Scholar 

  17. G.V. Kuznetsov, V.V. Salomatov, and S.V. Syrodoy, Numerical simulation of ignition of particles of a coal-water fuel, Combustion, Explosion and Shock Waves, 2015, Vol. 51, No.4, P. 409–415.

    Article  Google Scholar 

  18. S.V. Syrodoy, G.V. Kuznetsov, and V.V. Salomatov, The influence of heat transfer conditions on the parameters characterizing the ignition of coal-water fuel particles, Thermal Engineering, 2015, Vol. 62, No. 10, P. 703–707.

    Article  ADS  Google Scholar 

  19. S.V. Syrodoy, G.V. Kuznetsov, and V.V. Salomatov, Effect of the shape of particles on the characteristics of the coal-water fuel, Solid Fuel Chemistry, 2015, Vol. 3, No. 6 P. 365–371.

    Article  Google Scholar 

  20. S.V. Syrodoy, G.V. Kuznetsov, A.V. Zakharevich, N.Yu. Gutareva, and V.V. Salomatov, The influence of the structure heterogeneity on the characteristics and conditions of the coal-water fuel particles ignition in high temperature environment, Combustion and Flame, 2017, Vol. 180, P. 196–206.

    Article  Google Scholar 

  21. V.V. Salomatov, S.V. Syrodoy, and N.Yu. Gutareva, Concentration organic components in the hydrocarbon fuel particles conditions and characteristic of ignition, EPJ Web of Conferences, 2014, Vol. 76, P. 01018–1–01018–6.

    Article  Google Scholar 

  22. D.A. Frank-Kamenetsky, Diffusion and Heat Transfer in Chemical Kinetics, Acad. of Sci. of the USSR, Moscow-Leningrad, 1947.

    Google Scholar 

  23. D.B. Spalding, Some Fundamentals of Combustion, Butterworths, London, 1955.

    Google Scholar 

  24. K.Y. Ahn, S.W. Bbaek, and C.E. Choi, Investigation of a coal-water slurry droplet exposed to hot gas stream, Combustion Sci. and Technology, 1994, Vol. 97, No. 4–6, P. 429–447.

    Google Scholar 

  25. H. Hertz, On the evaporation of liquids, especially mercury, in vacuo, Annals of Physics, 1882, Vol. 17, No. 177 P. 12–17.

    Google Scholar 

  26. G.V. Kuznetsov, Experimental estimation of the strength of the coke of a charring, rubber-like, heat-shield material, Combustion, Explosion and Shock Waves, 1996, Vol. 32, No. 5 P. 595–600.

    Article  Google Scholar 

  27. G.V. Kuznetsov, High temperature of destruction of rubber-like heat protection materials under high pressures, High Temperature, 1996, Vol. 34, No.6, P. 905–909.

    Google Scholar 

  28. V.F. Formalev, Simulation of nonlinear nonisothermal filtration under the conditions of film cooling of anisotropic bodies, High Temperature, 1997, Vol. 35, No. 2 P. 286–292.

    Google Scholar 

  29. V.F. Formalev, Heat and mass transfer in anisotropic bodies, High Temperature, 2001, Vol. 39, No. 5 P. 753–774.

    Article  Google Scholar 

  30. V.V. Salomatov, G.V. Kuznetsov, S.V. Syrodoy, and N.Y. Gutareva, Ignition of coal-water fuel particles under the conditions of intense heat, Applied Thermal Engineering., 2016, Vol. 106, P. 561–569.

    Article  Google Scholar 

  31. S.V. Syrodoy, G.V. Kuznetsov, N.Y. Gutareva, K.A. Bugaeva, and R.I. Taburchinov, The conditions and characteristics of wood particles ignition in the stream of the high temperature gases, Combustion Sci. and Technology, 2018, Vol. 190, P. 663–686.

    Article  Google Scholar 

  32. G.V. Kuznetsov, V.V. Salomatov, and S.V. Syrodoy, Ignition of particles of wet woody biomass under convective diffusion of water vapor in the near-wall region, Combustion, Explosion and Shock Waves, 2018, Vol. 54, No. 3 P. 325–336.

    Article  Google Scholar 

  33. A.A. Khaschenko, O.V. Vecher, and E.I. Diskaeva, Study of the temperature dependence for the liquid evaporation rate from the free interface and the liquid boiling rate at the solid heated surface, Izv. Altaiskogo Universiteta, 2016, Vol. 89, P. 84–87.

    Google Scholar 

  34. Y. Chen, K. Aanjaney, and A. Atrey, A study to investigate pyrolysis of wood particles of various shapes and sizes, Fire Safety J., 2017, Vol. 91, P. 820–827.

    Article  Google Scholar 

  35. M.C. Leverett, Flow of oil-water mixtures through unconsolidated sands, Trans AIME, 1939, Vol. 132, P. 149–171.

    Article  Google Scholar 

  36. G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, Transactions of the Cambridge Philosophical Society, 1851, Vol. 9, No. 8 P. 1–86.

    ADS  Google Scholar 

  37. V.M. Gremyachkin and E. P. Mazanchenko, Gasification of porous carbon particle by steam, Russian Journal of Physical Chemistry B, 2009, Vol. 28, No. 4 P. 595–601.

    Article  Google Scholar 

  38. T.G. Shendrik, Formation of the pore structure of brown coal upon thermolysis with potassium hydroxide, Solid Fuel Chemistry, 2009, Vol. 43, P. 309–313.

    Article  Google Scholar 

  39. V.L. Strakhov, A.N. Garashchenko, G.V. Kuznetsov, and V.P. Rudzinskii, Mathematical Simulation of Thermophysical and Thermochemical Processes During Combustion of Intumescent Fire-Protective Coatings, Combustion, Explosion and Shock Waves, 2001, Vol. 37, No. 2 P. 178–186.

    Article  Google Scholar 

  40. K. Enkhjargal and V.V. Salomatov, Mathematical modeling of the heat treatment and combustion of a coal particle. 5. Burnup stage, Journal of Engineering Physics and Thermophysics, 2011, Vol. 84, P. 884–905.

    Google Scholar 

  41. V.I. Maksimov and T.A. Nagornova, Influence of heatsink from upper boundary on the industrial premises thermal conditions at gas infrared emitter operation, EPJ Web of Conferences, 2014, Vol. 76, P. 01006–1–01006–5.

    Article  Google Scholar 

  42. S.A. Arrhenius, Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte, Zeitschrift für Physikalische Chemie, 1889, Vol. 4, P. 96–116.

    Google Scholar 

  43. D.O. Glushkov, G.V. Kuznetsov, and P.A. Strizhak, Heat and mass transfer at gas-phase ignition of grinded coal layer by several metal particles heated to a high temperature, Thermophysics and Aeromechanics, 2017, Vol. 24, No. 4 P. 593–604.

    Article  ADS  Google Scholar 

  44. I.A. Sokolova, Models for Diffusion in Multicomponent Gases, Matematicheskoe Modelirovanie, 1993, Vol. 5, No. 5 P. 71–91.

    MathSciNet  MATH  Google Scholar 

  45. A.A. Agroskin and V.B. Gleibman, Thermophysics of Solid Fuel, Nedra, Moscow, 1980.

    Google Scholar 

  46. V.G. Lipovich, Coal Chemistry and Processing, Khimia, Moscow, 1988.

    Google Scholar 

  47. V.V. Pomerantsev, Fundamentals of Practical Combustion Theory, Energoatomizdat, Leningrad, 1986.

    Google Scholar 

  48. J. Mantzaras, Catalytic combustion of syngas, Combustion Sci. and Technology, 2008, Vol. 180, No. 6 P. 1137–1168.

    Article  Google Scholar 

  49. W.C. Jian, J. Wen, S. Lu, and J. Guo, Single-step chemistry model and transport coefficient model for hydrogen combustion, Sci. China Technology Sci., 2012, Vol. 55, P. 2163–2168.

    Article  Google Scholar 

  50. X. Zhang, T. Wang, J. Xu, S. Zheng, and X. Hou, Study on flame-vortex interaction in a spark ignition engine fueled with methane/carbon dioxide gases, J. Energy Institute, 2018, Vol. 91, Iss. 1, P. 133–144.

    Article  Google Scholar 

  51. P.J. Roache, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1976.

    MATH  Google Scholar 

  52. A.A. Samarskii, Local one-dimensional difference schemes on non-uniform grids, USSR Computational Mathematics and Mathematical Physics, 1963, Vol. 3, No. 3 P. 431–466.

    Article  Google Scholar 

  53. V.I. Polezhaev, A.V. Bunee, A.V. Verezub, G.S. Glushko, V.L. Gryaznov, K.G. Dubovnik, S.A. Nikitin, and A.I. Prostomolov, Simulation of Convective Heat and Mass Transfer Using Navier-Stokes Equations, Nauka, Moscow, 1987.

    Google Scholar 

  54. A.A. Samarskii and B.D. Moiseenko, An economic continuous calculation scheme for the Stefan multidimensional problem, USSR Computational Mathematics and Mathematical Physics, 1965, Vol. 5, No. 5 P. 816–827.

    Article  Google Scholar 

  55. E.A. Salganskii, V.P. Fursov, S.V. Glazov, M.V. Salganskaya, and G.B. Manelis, Model of vapor-air gasification of a solid fuel in a filtration mode, Combustion, Explosion and Shock Waves, 2006, Vol. 42, No. 1 P. 55–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Syrodoy.

Additional information

This research was financially supported by the Russian Science Foundation (Project No. 18-79-10015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrodoy, S.V., Salomatov, V.V. Influence of filtration heat transfer on parameters and conditions for ignition of coal-water fuel particles. Thermophys. Aeromech. 26, 745–760 (2019). https://doi.org/10.1134/S0869864319050123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864319050123

Keywords

Navigation