Skip to main content

Advertisement

Log in

Global thermoacoustic oscillations in a thermally driven pulse tube

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We obtain linearized, BiGlobal thermoacoustic solutions in a pulse tube driven via an imposed mean temperature gradient. Here, the pulse tube is treated as a key unit of a thermoacoustic heat engine, in which the conversion of thermal energy to useful acoustic fluctuations occurs. A primary goal of this work is to understand the hydrodynamic efficiency of the energy conversion process and how it depends upon some of the important operating parameters, including the geometry of the device which in the limit of long length-to-diameter ratio approaches the so-called narrow tube approximation. As this limit is frequently imposed in the wave propagation analyses of thermoacoustic devices, it is critical to investigate the physical connections of such a model to more realistic finite-length pulse tube configurations, which we do here. The mean flow is quiescent with an analytic mean temperature profile that still models the necessary physical details of the hot heat exchanger and regenerator. The computed thermoacoustic oscillations are found to be globally stable, approaching neutral stability conditions at the narrow tube limit. In finite-length tubes, three distinct types of modes are identified and analyzed. Here, within a linear framework, radial modes do appear to act as key enablers for longitudinal modes to be the primary carriers of acoustic energy from the pulse tube section, while the identified boundary modes, essentially numerical constructs, are ignored in the analysis. Further, a disturbance energy-based efficiency metric is constructed that provides mechanistic understanding of some of the key parameters in pulse tube operation. For finite-length tubes, it shows oscillations of the first asymmetric mode to be the most efficient, while the axisymmetric perturbations dominate for longer tubes that eventually lead to the idealized plane wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. von Helmholtz, H.: in Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg, vol. III, p. 6 (1863)

  2. Kirchhoff, G.: Über den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Pogg. Ann. 134, 177 (1868)

    Google Scholar 

  3. Rayleigh, L.: The Theory of Sound, vol. II. Dover, New York (1945)

    MATH  Google Scholar 

  4. Kramers, H.A.: Vibrations of a gas column. Physica 15, 971 (1949)

    Article  MATH  Google Scholar 

  5. Rott, N.: Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Angew. Math. Phys. 20, 230 (1969)

    Article  MATH  Google Scholar 

  6. Rott, N.: Thermally driven acoustic oscillations. Part II. Stability limit for Helium. Z. Angew. Math. Phys. 24, 54 (1973)

    Article  Google Scholar 

  7. Rott, N.: Thermoacoustics. Adv. Appl. Mech. 20, 135 (1980)

    Article  MATH  Google Scholar 

  8. Sugimoto, N., Yoshida, M.: Marginal condition for the onset of thermoacoustic oscillations of a gas in a tube. Phys. Fluids 19(7), 074101 (2007)

    Article  MATH  Google Scholar 

  9. Sugimoto, N., Takeuchi, R.: Marginal conditions for thermoacoustic oscillations in resonators. Proc. R. Soc. A 465, 3531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sugimoto, N.: Thermoacoustic-wave equations for gas in a channel and a tube subject to temperature gradient. J. Fluid Mech. 658, 89 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hyodo, H., Sugimoto, N.: Stability analysis for the onset of thermoacoustic oscillations in a gas-filled looped tube. J. Fluid Mech. 741, 585 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Swift, G.W.: Thermoacoustic engines. J. Acoust. Soc. Am. 84(4), 1145 (1988)

    Article  Google Scholar 

  13. Tijdeman, H.: On the propagation of sound waves in cylindrical tubes. J. Sound Vib. 39(1), 1 (1975)

    Article  MATH  Google Scholar 

  14. Swift, G.W.: Analysis and performance of a large thermoacoustic engine. J. Acoust. Soc. Am. 92(3), 1551 (1992)

    Article  MathSciNet  Google Scholar 

  15. Ward, W.C., Swift, G.W.: Design environment for low-amplitude thermoacoustic engines. J. Acoust. Soc. Am. 95(6), 3671 (1994)

    Article  Google Scholar 

  16. Swift, G.W., Ward, W.C.: Simple harmonic analysis of regenerators. J. Thermophys. Heat Transf. 10(4), 652 (1996)

    Article  Google Scholar 

  17. Ueda, Y., Kato, C.: Stability analysis of thermally induced spontaneous gas oscillations in straight and looped tubes. J. Acoust. Soc. Am. 124(2), 851 (2008)

    Article  Google Scholar 

  18. Shimizu, D., Sugimoto, N.: Numerical study of thermoacoustic Taconis oscillations. J. Appl. Phys. 107(3), 034910 (2010)

    Article  Google Scholar 

  19. Scalo, C., Lin, J., Lele, S.K., Hesselink, L.: Towards full-scale numerical simulations of a traveling-wave thermoacoustic Stirling heat engine. In: AIAA Paper, no. 2013–3208 (2013)

  20. Scalo, C., Lele, S.K., Hesselink, L.: Linear and nonlinear modelling of a theoretical travelling-wave thermoacoustic heat engine. J. Fluid Mech. 766, 368 (2015)

    Article  MathSciNet  Google Scholar 

  21. Lin, J., Scalo, C., Hesselink, L.: High-fidelity simulation of a standing-wave thermoacoustic-piezoelectric engine. J. Fluid Mech. 808, 19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Watanabe, M., Prosperetti, A., Yuan, H.: A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory. J. Acoust. Soc. Am. 102(6), 3484 (1997)

    Article  Google Scholar 

  23. de Jong, J.A., Wijnant, Y.H., Wilcox, D., de Boer, A.: Modeling of thermoacoustic systems using the nonlinear frequency domain method. J. Acoust. Soc. Am. 138(3), 1241 (2015)

    Article  Google Scholar 

  24. Tijani, M.E.H., Spoelstra, S.: A high performance thermoacoustic engine. J. Appl. Phys. 110(9), 093519 (2011)

    Article  Google Scholar 

  25. Nichols, J.W., Lele, S.K.: Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225 (2011)

    Article  MATH  Google Scholar 

  26. Nichols, J.W., Lele, S.K.: Global mode analysis of turbulent high-speed jets. In: Moin, P., Larsson, J., Mansour, N. (eds.) Annual Research Briefs. Center for Turbulence Research, Stanford University, Stanford (2010)

  27. Garnaud, X., Lesshafft, L., Schmid, P.J., Huerre, P.: Modal and transient dynamics of jet flows. Phys. Fluids 25(4), 044103 (2013)

    Article  MATH  Google Scholar 

  28. Lycklama À Nijeholt, J.L., Tijani, M., Spoelstra, S.: Simulation of a traveling-wave thermoacoustic engine using computational fluid dynamics. J. Acoust. Soc. Am. 118(4), 2265 (2005)

    Article  Google Scholar 

  29. Backhaus, S., Swift, G.W.: A thermoacoustic Stirling heat engine. Nature 399, 335 (1999)

    Article  Google Scholar 

  30. Sugimoto, N.: Nonlinear theory for thermoacoustic waves in a narrow channel and pore subject to a temperature gradient. J. Fluid Mech. 797, 765 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hilsenrath, J.: Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam. Pergamon Press, Oxford (1960)

    Google Scholar 

  32. Sinha, A., Gudmundsson, K., Xia, H., Colonius, T.: Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech. 789, 36 (2016)

    Article  MathSciNet  Google Scholar 

  33. Batchelor, G., Gill, A.E.: Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  34. Khorrami, M.R., Malik, M.R., Ash, R.L.: Application of spectral collocation techniques to the stability of swirling flows. J. Comput. Phys. 81, 206 (1989)

    Article  MATH  Google Scholar 

  35. Theofilis, V., Hein, S., Dallmann, U.: On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Proc. R. Soc. A. 358(1777), 3229 (2000)

    Article  MATH  Google Scholar 

  36. Theofilis, V.: Advances in global linear instability of nonparallel and three-dimensional flows. Prog. Aero Sci. 39(4), 249 (2003)

    Article  Google Scholar 

  37. Kumar, S., Samanta, A.: The role of global thermoacoustic modes in the energy exchange of a finite-length thermally-driven duct. In: Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, AIAA Paper, no. 2019–2593 (2019)

  38. Jafari-Varzaneh, H.A., Hosseini, S.M.: A new map for the Chebyshev pseudospectral solution of differential equations with large gradients. Numer. Algorithms 69(1), 95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Malik, M.R., Zang, T.A., Hussaini, M.Y.: A spectral collocation method for the Navier–Stokes equations. J. Comput. Phys. 61, 64 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  40. Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.C., Noack, B.R., Wygnanski, I.: Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383 (2011)

    Article  MATH  Google Scholar 

  41. Hanifi, A., Schmid, P.J., Henningson, D.S.: Transient growth in compressible boundary layer flow. Phys. Fluids 8(3), 826 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chu, B.T.: On the energy transfer to small disturbances in fluid flow (Part I). Acta Mech. 1(3), 215 (1965)

    Article  Google Scholar 

  43. Yadav, N.K., Samanta, A.: The stability of compressible swirling pipe flows with density stratification. J. Fluid Mech. 823, 689 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lele, S.K.: Flows with density variations and compressibility: similarities and differences. In: Fulachier, L., Lumley, J.L., Anselmet, F. (eds.) IUTAM Symposium on Variable Density Low-Speed Turbulent Flows, pp. 279–301. Kluwer Academic Publishers, Berlin (1997)

    Chapter  Google Scholar 

  45. Balasubramanian, K., Sujith, R.I.: Thermoacoustic instability in a Rijke tube: non-normality and nonlinearity. Phys. Fluids 20(4), 044103 (2008)

    Article  MATH  Google Scholar 

  46. Mann III, J.A., Tichy, J., Romano, A.J.: Instantaneous and time-averaged energy transfer in acoustic fields. J. Acoust. Soc. Am. 82(1), 17 (1987)

    Article  MathSciNet  Google Scholar 

  47. Majdalani, J., Kumar, T.R., Akiki, M.: Biglobal instability of the compressible Taylor-Culick solution in cylindrical rockets. In: AIAA Paper, no. 2016–4792 (2016)

Download references

Acknowledgements

This work has been supported by the Joint Advanced Technology Programme (JATP), Government of India, via Defence Research and Development Organisation Grant Number JATP/AS/AE/148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Samanta.

Additional information

Communicated by Daniel J. Bodony.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Validation of the BiGlobal solver

A reduced version of the TAE of Fig. 1, including only the PT of a specific \(L^*/D^*\) ratio, subjected to a uniform temperature profile and classical boundary conditions are considered to verify the present BiGlobal algorithm. For such conditions, both analytical results, as well as results from another BiGlobal simulations [47] are available for us to compare with, which are shown in Table 2 and Fig. 17. Here, we simulate a zero Mach number case with \(L^*/D^*= 5\) with \(N_z \times N_r = 40 \times 40\), showing only the \(m=0\) results. In this exercise, excellent match with the analytically obtained frequencies (in fact, better than the other BiGlobal results) are obtained in Table 2, while the corresponding mode shapes also matched well (see Fig. 17).

Elsewhere, our BiGlobal code has also been used to validate against configurations with a mean/base flow, e.g., compressible chevron jets, incompressible vortex rings, etc.

Table 2 Comparison of the first 5 modes from the present BiGlobal code with theoretical and numerical predictions of Majdalani et al. [47]
Fig. 17
figure 17

Comparison of the pressure eigenfunctions between the present BiGlobal simulations (right column) with Majdalani et al. [47]

B The compatibility conditions for pulse tube

As discussed in Sect. 2.3, compatibility conditions are needed to avoid using ad hoc boundary conditions at the pulse tube ends. This procedure provides such conditions naturally via considering the travel of acoustic waves inside the TAE as a whole instead of treating the pulse tube in isolation. Here, for simplicity, we restrict ourselves to one-dimensional plane waves traveling through the TAE without any losses to form a standing-wave pattern.

Fig. 18
figure 18

Same as in Fig. 1, but showing details of TAE components other than the pulse tube (PT) (shaded gray). The inlet and outlet of each component is labeled with the suffix “i” and “o,” respectively

The pressure and acoustic particle velocity for a one-dimensional standing wave are simply

$$\begin{aligned} {p}^{\prime }(z,t)= & {} A \exp \left\{ \mathrm {i}(\omega t - \kappa z)\right\} + B \exp \left\{ \mathrm {i}(\omega t + \kappa z)\right\} , \; \mathrm {and} \end{aligned}$$
(B1)
$$\begin{aligned} {v}^{\prime }(z,t)= & {} \frac{1}{Y_S} \left[ A \exp \left\{ \mathrm {i}(\omega t - \kappa z)\right\} + B \exp \left\{ \mathrm {i}(\omega t + \kappa z)\right\} \right] , \end{aligned}$$
(B2)

respectively, where \(Y_S=1/S\) is a characteristic impedance and S is the cross-sectional area of a section of the TAE. Here, S is non-dimensionalized by the pulse tube cross-sectional area \(S_{\mathrm{PT}}\) and \({v}^{\prime } = S{u}^{\prime }_z\). Next, with reference to Fig. 18, we apply the hard wall boundary conditions at \(z = 0\) and \(z = L_t\) to (B1) and (B2) to obtain the following relations at the resonator

$$\begin{aligned} {v}^{\prime }_{R_{\mathrm{o}}}(L_r,t) = -\frac{\mathrm {i}}{Y_r} \tan (\kappa L_r)\,{p}^{\prime }_{R_{\mathrm{o}}}(L_r,t), \end{aligned}$$
(B3)

and the compliance

$$\begin{aligned} {v}^{\prime }_{C_{\mathrm{i}}}(L_n,t) = \frac{\mathrm {i}}{Y_c} \tan (\kappa L_c)\,{p}^{\prime }_{C_{\mathrm{i}}}(L_n,t), \end{aligned}$$
(B4)

respectively, where \(Y_r\) and \(Y_c\) are the respective characteristic impedances for the resonator and compliance, while \(L_n = L_r + L\) and the total length \(L_t = L_n + L_c\). Similarly, for the inertance

$$\begin{aligned} {p}^{\prime }_{I_{\mathrm{o}}}(L_n,t)= & {} \cos (\kappa L) \, {p}^{\prime }_{I_{\mathrm{i}}}(L_r,t) - \mathrm {i}\,Y_i \sin (\kappa L) \, {v}^{\prime }_{I_{\mathrm{i}}}(L_r,t), \; \mathrm {and} \end{aligned}$$
(B5)
$$\begin{aligned} {v}^{\prime }_{I_{\mathrm{o}}}(L_n,t)= & {} -\frac{\mathrm {i}}{Y_i} \sin (\kappa L) \, {p}^{\prime }_{I_{\mathrm{i}}}(L_r,t) + \cos (\kappa L) \, {v}^{\prime }_{I_{\mathrm{i}}}(L_r,t), \end{aligned}$$
(B6)

where \(Y_i\) is the characteristic impedance of the inertance. Further, continuity of pressure and mass at \(z=L_r\) and \(z=L_n\) yields

$$\begin{aligned}&{p}^{\prime }_{R_{\mathrm{o}}} = {p}^{\prime }_{I_{\mathrm{i}}} = {p}^{\prime }_{P_{\mathrm{o}}}, \qquad {p}^{\prime }_{C_{\mathrm{i}}} = {p}^{\prime }_{I_{\mathrm{o}}} = {p}^{\prime }_{P_{\mathrm{i}}},\, \mathrm {and} \end{aligned}$$
(B7)
$$\begin{aligned}&{v}^{\prime }_{R_{\mathrm{o}}} = {v}^{\prime }_{I_{\mathrm{i}}} + {v}^{\prime }_{P_{\mathrm{o}}}, \qquad {v}^{\prime }_{C_{\mathrm{i}}} = {v}^{\prime }_{P_{\mathrm{i}}} + {v}^{\prime }_{I_{\mathrm{o}}}. \end{aligned}$$
(B8)

Next, using (B7), (B8), (B3) and (B4) in (B5) and (B6), we get two equations involving the pressure and velocity at the pulse tube ends (\({p}^{\prime }_{P_{\mathrm{i}}}\), \({p}^{\prime }_{P_{\mathrm{o}}}\), \({v}^{\prime }_{P_{\mathrm{i}}}\) and \({v}^{\prime }_{P_{\mathrm{o}}}\)) along with a third equation

$$\begin{aligned} {u}^{\prime }_{z_{P_{\mathrm{i}}}}-\cos (\kappa L)\,{u}^{\prime }_{z_{P_{\mathrm{o}}}} = \mathrm {i}\sin (\kappa L)\, {p}^{\prime }_{P_{\mathrm{o}}} \end{aligned}$$
(B9)

when (B1) and (B2) are applied across the pulse tube. Two compatibility equations can now be derived for any end on eliminating the quantities at the other end to yield

$$\begin{aligned}&\left\{ \cot (\kappa L_c) \left[ \varSigma _c \cos (\kappa L) \tan (\kappa L_r) + \varSigma _c \sin (\kappa L) \right] + \cos (\kappa L) - \varSigma _i \sin (\kappa L) \tan (\kappa L_r) \right\} \nonumber \\&\quad \times \left( \bar{T} {\rho }^{\prime }_{P_{\mathrm{o}}} + \bar{\rho } {T}^{\prime }_{P_{\mathrm{o}}} \right) /\gamma + \mathrm {i}\left\{ \left( \varSigma _i - 1 \right) \sin (\kappa L) \right\} \, {u}^{\prime }_{z_{P_{\mathrm{o}}}} = 0, \end{aligned}$$
(B10)

at the PT outlet, where \(S_r/S_c = \varSigma _c\), \(S_r/S_i = \varSigma _i\), and

$$\begin{aligned}&\{ \cot (\kappa L_c) \left[ \varSigma _c \cos ^2(\kappa L)\, \tan (\kappa L_r) + \varSigma _c \sin (\kappa L)\,\cos (\kappa L) \right] + \cos ^2(\kappa L) \nonumber \\&\quad - \left( \varSigma _i - 1\right) \sin (\kappa L) - \varSigma _i \sin (\kappa L)\,\cos (\kappa L)\,\tan (\kappa L_r) \} \, \left( \bar{T} {\rho }^{\prime }_{P_{\mathrm{i}}} + \bar{\rho } {T}^{\prime }_{P_{\mathrm{i}}} \right) /\gamma \nonumber \\&\quad + \mathrm {i}\{\cot (\kappa L_c) \left[ \varSigma _c \sin ^2(\kappa L) + \varSigma _c \cos (\kappa L)\, \sin (\kappa L)\,\tan (\kappa L_r) \right] + \cos (\kappa L) \,\sin (\kappa L) \nonumber \\&\quad - \varSigma _i \sin ^2(\kappa L) \tan (\kappa L_r) + \left( \varSigma _i -1\right) \cos (\kappa L)\sin (\kappa L) \} \, {u}^{\prime }_{z_{P_{\mathrm{i}}}} = 0, \end{aligned}$$
(B11)

at the PT inlet, where \(\gamma {p}^{\prime }= \bar{\rho }{T}^{\prime }+\bar{T}{\rho }^{\prime }\) is used. Equations (B10) and (B11) are of the same form as the boundary conditions of (2.16). For example, the benchmark case, whose spectrum is shown in Fig. 4 with \(L^*/D^*= 2\) and \(\bar{T}_{\mathrm{PT}} = 3.5\), has the following geometric parameters: \(L_r = 20.62\), \(L = 2\), \(L_c = 0.96\), \(\varSigma _c = 1\), \(\varSigma _i = 56.16\) and the acoustic wavenumber \(\kappa = 0.133\). The geometry of our TAE follows closely the Lycklama à Nijeholt configuration [20, 28]. For the other \(L^*/D^*\) ratios of this work, the lengths are proportionally increased, keeping the cross-section identical.

C The stability equation operators

The elements of the matrices and of Eq. (2.6) are given in the following.

and

where

$$\begin{aligned} A_{11}&= \bar{u}_r \frac{\partial }{\partial r} + \bar{u}_z \frac{\partial }{\partial z} + \mathrm {i}\bar{u}_{\theta }\frac{m}{r} + \frac{\bar{u}_r}{r} + \bar{u}_{r,r} + \bar{u}_{z,z},\\ A_{12}&= \bar{\rho } \frac{\partial }{\partial r} + \bar{\rho }_{,r} + \frac{\bar{\rho }}{r},\\ A_{13}&= \mathrm {i}\bar{\rho }\frac{m}{r},\\ A_{14}&= \bar{\rho } \frac{\partial }{\partial z} +\bar{\rho }_{,z},\\ A_{15}&= 0,\\ A_{21}&= \frac{\bar{T}}{\gamma } \frac{\partial }{\partial r} + \frac{\bar{T}_{,r}}{\gamma }+ \bar{u}_r\,\bar{u}_{r,r}-\frac{{\bar{u}_{\theta }^2}}{r} + \bar{u}_z\,\bar{u}_{r,z},\\ A_{22}&= \bar{\rho }\,\bar{u}_r \frac{\partial }{\partial r} + \bar{\rho }\,\bar{u}_z \frac{\partial }{\partial z} + \mathrm {i}\bar{\rho }\,\bar{u}_{\theta }\frac{m}{r} + \frac{1}{Re}\frac{m^2}{r^2}+ \bar{\rho }\,\bar{u}_{r,r}-\frac{4}{3}\frac{1}{Re} \frac{\partial ^2 }{ \partial r^2} -\frac{1}{Re} \frac{\partial ^2 }{ \partial z^2} -\frac{4}{3}\frac{1}{r Re} \frac{\partial }{\partial r} + \frac{4}{3}\frac{Re_{,r}}{Re^2} \frac{\partial }{\partial r} \\&\quad +\frac{Re_{,z}}{Re^2} \frac{\partial }{\partial z} -\frac{2}{3}\frac{Re_{,r}}{Re^2}+\frac{4}{3}\frac{1}{r^2 Re},\\ A_{23}&= -\frac{\mathrm {i}}{3}\frac{m}{r Re} \frac{\partial }{\partial r} + \frac{7\mathrm {i}}{3}\frac{m}{r^2 Re} - \frac{2}{3}\frac{Re_{,r}}{r Re^2} - \frac{2\bar{\rho }\,\bar{u}_{\theta }}{r},\\ A_{24}&= -\frac{1}{3 Re} \frac{\partial ^2 }{ \partial r \partial z} +\bar{\rho }\,\bar{u}_{r,z}+\frac{Re_{,z}}{Re^2} \frac{\partial }{\partial r} -\frac{2}{3}\frac{Re_{,r}}{Re^2} \frac{\partial }{\partial z} ,\\ A_{25}&= \frac{\bar{\rho }}{\gamma } \frac{\partial }{\partial r} + \frac{\bar{\rho }_{,r}}{\gamma },\\ A_{31}&= \mathrm {i}\bar{T} \frac{m}{\gamma r} + \bar{u}_r\,\bar{u}_{\theta ,r} + \frac{\bar{u_{r}}\,\bar{u}_{\theta }}{r}+ \bar{u}_z\,\bar{u}_{\theta ,z},\\ A_{32}&= -\frac{\mathrm {i}}{3}\frac{m}{r Re} \frac{\partial }{\partial r} -\frac{7\mathrm {i}}{3}\frac{m}{r^2 Re} + \mathrm {i}\frac{m Re_{,r}}{r Re^2} + \bar{\rho }\,\bar{u}_{\theta ,r} + \frac{\bar{\rho }\,\bar{u}_{\theta }}{r},\\ A_{33}&= \bar{\rho }\,\bar{u}_r \frac{\partial }{\partial r} + \bar{\rho }\,\bar{u}_z \frac{\partial }{\partial z} + \mathrm {i}\bar{\rho }\,\bar{u}_{\theta }\frac{m}{r} + \frac{\bar{\rho }\,\bar{u}_r}{r}+ \frac{4}{3}\frac{m^2}{r^2 Re} -\frac{1}{Re} \frac{\partial ^2 }{ \partial r^2} -\frac{1}{Re} \frac{\partial ^2 }{ \partial z^2} - \frac{1}{r Re} \frac{\partial }{\partial r} -\frac{Re_{,r}}{Re^2} \frac{\partial }{\partial r} \\&\quad + \frac{Re_{,z}}{Re^2} \frac{\partial }{\partial z} + \frac{1}{r^2 Re} -\frac{Re_{,r}}{r Re^2}, \end{aligned}$$
$$\begin{aligned} A_{34}&= \mathrm {i}\frac{m Re_{,z}}{r Re^2} - \frac{\mathrm {i}}{3}\frac{m}{r Re} \frac{\partial }{\partial z} + \bar{\rho \,}\bar{u}_{\theta ,z},\\ A_{35}&= \mathrm {i}\bar{\rho } \frac{m}{\gamma r},\\ A_{41}&= \frac{\bar{T}}{\gamma } \frac{\partial }{\partial z} + \frac{\bar{T}_{,z}}{\gamma } + \bar{u}_r\,\bar{u}_{z,r} + \bar{u}_z\,\bar{u}_{z,z},\\ A_{42}&= -\frac{1}{3}\frac{1}{Re} \frac{\partial ^2 }{ \partial r \partial z} + \bar{\rho }\,\bar{u}_{z,r} - \frac{2}{3}\frac{Re_{,z}}{Re^2} \frac{\partial }{\partial r} - \frac{1}{3}\frac{1}{r Re} \frac{\partial }{\partial z} +\frac{Re_{,r}}{Re^2} \frac{\partial }{\partial z} - \frac{2}{3}\frac{Re_{,z}}{ r Re^2},\\ A_{43}&= -\frac{\mathrm {i}}{3}\frac{m}{r Re} \frac{\partial }{\partial z} -\frac{2\mathrm {i}}{3}\frac{m Re_{,z}}{r Re^2},\\ A_{44}&= \bar{\rho }\,\bar{u}_r \frac{\partial }{\partial r} + \bar{\rho }\,\bar{u}_z \frac{\partial }{\partial z} + \mathrm {i}\bar{\rho }\,\bar{u}_{\theta }\frac{m}{r} + \bar{\rho }\,\bar{u}_{z,z} + \frac{m^2}{r^2 Re} - \frac{1}{Re} \frac{\partial ^2 }{ \partial r^2} - \frac{4}{3}\frac{1}{Re} \frac{\partial ^2 }{ \partial z^2} - \frac{1}{r Re} \frac{\partial }{\partial r} + \frac{Re_{,r}}{Re^2} \frac{\partial }{\partial r} \qquad \quad \\&\quad + \frac{4}{3}\frac{Re_{,z}}{ Re^2} \frac{\partial }{\partial z} ,\\ A_{45}&= \frac{\bar{\rho }}{\gamma } \frac{\partial }{\partial z} + \frac{\bar{\rho }_{,z}}{\gamma },\\ A_{51}&= -\bar{u}_r\,\bar{T}\frac{\gamma -1}{\gamma } \frac{\partial }{\partial r} -\bar{u}_z\,\bar{T}\frac{\gamma -1}{\gamma } \frac{\partial }{\partial z} -\mathrm {i}\bar{u}_{\theta }\,\bar{T}\frac{\gamma -1}{\gamma }\frac{m}{r}+(\bar{u}_r\,\bar{T}_{,r} +\bar{u}_z\,\bar{T}_{,z})c_p\\&\quad -(\bar{u}_r\,\bar{T}_{,r}+\bar{u}_z\,\bar{T}_{,z})\frac{\gamma -1}{\gamma },\\ A_{52}&= -2\mathrm {i}\left( -\frac{\bar{u}_{\theta }}{r}+\bar{u}_{\theta ,r}\right) \frac{ (\gamma -1)m}{r Re} - 4 \bar{u}_{r,r}\frac{\gamma -1}{Re} \frac{\partial }{\partial r} + \left( \bar{u}_{r,r} +\frac{4}{3}\frac{\bar{u}_r}{r}+ \bar{u}_{z,z}\right) \frac{\gamma -1}{Re} \frac{\partial }{\partial r} \\&\quad - 4\bar{u}_r\frac{\gamma -1}{r^2 Re} - 2\left( \bar{u}_{r,z}+\bar{u}_{z,r}\right) \frac{\gamma -1}{Re} \frac{\partial }{\partial z} + \frac{4}{3}\left( \bar{u}_{r,r}+\frac{\bar{u}_r}{r}+ \bar{u}_{z,z}\right) \frac{\gamma -1}{r Re} +\bar{\rho }\,\bar{T}_{,r}c_p \\&\quad -\bar{p}_{,r}(\gamma -1),\\ A_{53}&= -4\mathrm {i}\bar{u}_r\frac{(\gamma -1)m}{r^2 Re}+ \frac{4\mathrm {i}}{3}\left( \bar{u}_{r,r}+\frac{\bar{u}_r}{r}+ \bar{u}_{z,z}\right) \frac{(\gamma -1)m}{r Re} - 2\left( \bar{u}_{\theta ,r}-\frac{\bar{u}_{\theta }}{r}\right) \frac{\gamma -1}{Re} \frac{\partial }{\partial r} \\&\quad -2\bar{u}_{\theta ,z}\frac{\gamma -1}{Re} \frac{\partial }{\partial z} - 2\left( \frac{\bar{u}_{\theta }}{r}-\bar{u}_{\theta ,r}\right) \frac{\gamma -1}{r Re},\\ A_{54}&= -2\mathrm {i}\bar{u}_{\theta ,z}\frac{(\gamma -1) m}{r Re} - 2 \left( \bar{u}_{z,r}+\bar{u}_{r,z}\right) \frac{\gamma -1}{Re} \frac{\partial }{\partial r} - \frac{4}{3}\bar{u}_{z,z}\frac{\gamma -1}{Re} \frac{\partial }{\partial z} + c_p\bar{\rho }\,\bar{T}_{,z}-(\gamma -1)\bar{p}_{,z}\\&\quad +\frac{4}{3}\left( \bar{u}_{r,r} +\bar{u}_{z,z}+\frac{\bar{u}_r}{r}\right) \frac{\gamma -1}{Re} \frac{\partial }{\partial z} , \\ A_{55}&= \bar{\rho }\,\bar{u}_r c_p \frac{\partial }{\partial r} - \bar{\rho }\,\bar{u}_r\frac{\gamma -1}{\gamma } \frac{\partial }{\partial r} + \bar{\rho }\,\bar{u}_z c_p \frac{\partial }{\partial z} - \bar{\rho }\,\bar{u}_z\frac{\gamma -1}{\gamma } \frac{\partial }{\partial z} + \mathrm {i}\bar{\rho }\,\bar{u}_{\theta }\frac{m c_p}{r} - \mathrm {i}\bar{\rho }\,\bar{u}_{\theta }\frac{(\gamma -1)m}{\gamma r}\\&\quad +\frac{m^2}{r^2 Pe} -\Big (\bar{u}_r\bar{\rho }_{,r}+ \bar{u}_z\bar{\rho }_{,z}\Big ) \frac{\gamma -1}{\gamma }-\frac{1}{Pe} \frac{\partial ^2 }{ \partial r^2} -\frac{1}{Pe} \frac{\partial ^2 }{ \partial z^2} -\frac{1}{r Pe} \frac{\partial }{\partial r} + \frac{Pe_{,r}}{Pe^2} \frac{\partial }{\partial r} +\frac{Pe_{,z}}{Pe^2} \frac{\partial }{\partial z} , \end{aligned}$$

with \(a_{,b} = \dfrac{\partial a}{\partial b} \) being used to denote partial derivatives.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Samanta, A. Global thermoacoustic oscillations in a thermally driven pulse tube. Theor. Comput. Fluid Dyn. 33, 433–461 (2019). https://doi.org/10.1007/s00162-019-00501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00501-2

Keywords

Navigation