Skip to main content
Log in

Changes in Dielectric and Mechanical Properties of Spheroplastic Containing Metallized Glass Microspheres under Compressive Deformation

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The article presents experimental results of changes in the dielectric and mechanical characteristics of spheroplastics based on an organosilicon elastomer and metallized glass microspheres caused by static and shock compression. Two regions of the frequency dispersion of the dielectric constant are established that are associated with the metal coating of microspheres. It was found that both the low- and high-frequency dispersions of the complex dielectric constant decrease sharply at a relative compressive strain of no less than 70%. Possible causes of the detected change in the complex permittivity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. A. Berlin and F. A. Shutov, Strengthened Gas-Filled Plastics (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  2. A. N. Trofimov, A. Yu. Zarubina, and I. D. Simonov-Emel’yanov, Polimer. Massy, No. 11–12, 3 (2014).

  3. I. G. Gurtovnik, V. I. Sokolov, N. N. Trofimov, and S. I. Shalgunov, Radiotransparent Fiberglass Products (Mir, Moscow, 2002) [in Russian].

  4. B. L. Zhu, H. Zheng, J. Wang, J. Ma, J. Wu, and R. Wu, Composites, Part B 58, 91 (2014).

    Article  Google Scholar 

  5. L. A. Merzhievskii and A. D. Resnyanskii, Fiz. Goreniya Vzryva 28 (3), 119 (1992).

    Google Scholar 

  6. A. N. Zubareva, A. V. Utkin, and V. P. Efremov, Konstr. Kompoz. Mater., No. 3, 45 (2016).

  7. N. Gupta, S. Priya, R. Islam, and W. Ricci, Ferroelectrics 345, 1 (2006).

    Article  Google Scholar 

  8. Yu. I. Dimitrienko, S. V. Sborshchikov, A. P. Sokolov, B. R. Gafarov, and D. N. Sadovnichii, Kompozity Nanostrukt., No. 3, 35 (2013).

  9. A. V. Baikov, R. A. Korokhin, V. I. Solodilov, A. Ya. Gorenberg, V. G. Ivanova-Mumjieva, U. G. Zvereva, and A. M. Kuperman, Kompozity Nanostrukt. 9 (1), 1 (2017).

    Google Scholar 

  10. A. K. Singh, A. Shishkin, T. Koppel, and N. Gupta, Composites, Part B 149, 188 (2018).

    Article  Google Scholar 

  11. X.-F. Meng, X.-Q. Shen, and W. Liu, Appl. Surf. Sci. 258 (7), 2627 (2012).

    Article  ADS  Google Scholar 

  12. I. D. Morokhov, V. I. Petinov, L. I. Trusov, and V. F. Petrunin, Sov. Phys.-Usp. 24 (4), 295 (1981).

    Article  ADS  Google Scholar 

  13. P. Xu, X. Han, C. Wang, D. Zhou, Z. Lu, A. Wen, X. Wang, and B. Zhang, J. Phys. Chem. B 112, 10443 (2008).

    Article  Google Scholar 

  14. B. I. Sazhin, A. M. Lobanov, O. S. Romanovskaya, M. P. Eidel’nant, S. N. Koikov, V. P. Shuvaevv, and M.  E. Borisova, Electrical Properties of Polymers (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  15. Impedance Spectroscopy: Theory, Experiment, and Applications, Ed. by E. Barsoukov and J. R. Macdonald, 2nd ed. (Wiley, New York, 2005).

    Google Scholar 

  16. Yu. M. Milekhin, D. N. Sadovnichii, K. Yu. Sheremetyev, Yu. G. Kalinin, E. D. Kazakov, and M. B. Markov, Dokl. Chem. 487 (1), 184 (2019).

    Article  Google Scholar 

  17. D. L. Bykov, D. N. Konovalov, V. P. Mel’nikov, and A. N. Osavchuk, Mech. Solids 45 (3), 427 (2010).

    Article  ADS  Google Scholar 

  18. N. Gupta and E. Woldesenbet, J. Cell. Plast. 40, 461 (2004).

    Article  Google Scholar 

  19. A. A. Snarskii, I. V. Bezsudnov, and V. A. Sevryukov, Transfer Processes in Macroscopically Disordered Systems: From the Average Field Theory to Percolation (LKI, Moscow, 2015) [in Russian].

    MATH  Google Scholar 

  20. N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, V. I. Natrusov, A. T. Ponomarenko, V. G. Shevchenko, V. I. Sokolov, and I. D. Simonov-Emel’yanov, Physics of Composite Materials (Mir, Moscow 2005) [in Russian].

  21. B. Abeles, H. L. Pinch, and J. I. Gittleman, Phys. Rev. Lett. 35 (4), 247 (1975).

    Article  ADS  Google Scholar 

  22. A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Sci., Singapore, 2007).

    Book  Google Scholar 

  23. P. Saini, V. Choudhary, N. Vijayan, and R. K. Kotnala, J. Phys. Chem. C 116 (13), 13403 (2012).

    Article  Google Scholar 

  24. S. P. Pawar, M. Gandi, C. Saraf, and S. Bose, J. Mater. Chem. C 4 (22), 4954 (2016).

    Article  Google Scholar 

  25. I. M. De Rosa, A. Dinescu, F. Sarasini, M. S. Sarto, and A. Tamburrano, Compos. Sci. Technol. 70 (1), 102 (2010).

    Article  Google Scholar 

  26. Yu. D. Tret’yakov, L. I. Martynenko, A. N. Grigor’ev, and A. Yu. Tsivadze, Inorganic Chemistry. Chemistry of the Elements (Moscow State Univ., Moscow, 2007), p. 307 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Sadovnichii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnichii, D.N., Milekhin, Y.M., Malinin, S.A. et al. Changes in Dielectric and Mechanical Properties of Spheroplastic Containing Metallized Glass Microspheres under Compressive Deformation. Tech. Phys. 65, 1076–1082 (2020). https://doi.org/10.1134/S1063784220070166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220070166

Navigation