Skip to main content
Log in

An adaptive discontinuity fitting technique on unstructured dynamic grids

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A novel, adaptive discontinuity fitting technique has been further developed on unstructured dynamic grids to fit both shock waves and contact discontinuities in steady flows. Moreover, in order to efficiently obtain shock-fitting solutions, two strategies, direct-fitting and indirect-fitting, have been proposed to, respectively, deal with simple and complex flows. More specifically, without first computing the flow field by a shock-capturing method, the direct-fitting strategy, mainly dealing with these discontinuities of which topologies are clearly known, can quickly obtain the solutions by initially presetting an approximate discontinuity front. By contrast, the indirect-fitting strategy, especially in coping with the complicated discontinuity structures, must utilize both shock-capturing solutions and shock detection techniques to first determine initial discontinuity locations. The two strategies have been successfully applied to a series of compressible flows, including a two-dimensional flow with type IV shock–shock interaction and a three-dimensional flow with type VI interaction. In addition, comparing the fully-fitting solution with the partially-fitting solution in the discontinuity interaction region, it is indicated that an accurate result can be acquired if all the discontinuities in the vicinity of interaction points are fully fitted. Nevertheless, the computational accuracy of expansion waves can indeed significantly affect the downstream discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Moretti, G.: Thirty-six years of shock fitting. Comput. Fluids 31, 719–723 (2002). https://doi.org/10.1016/s0045-7930(01)00072-x

    Article  MATH  Google Scholar 

  2. Casper, J., Carpenter, M.H.: Computational considerations for the simulation of shock-induced sound. SIAM J. Sci. Comput. 19(3), 813–828 (1998). https://doi.org/10.1137/s1064827595294101

    Article  MathSciNet  MATH  Google Scholar 

  3. Lee, T.K., Zhong, X.L.: Spurious numerical oscillations in simulation of supersonic flows using shock-capturing schemes. AIAA J. 37, 313–319 (1999). https://doi.org/10.2514/2.732

    Article  Google Scholar 

  4. Paciorri, R., Bonfiglioli, A.: Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique. J. Comput. Phys. 230(8), 3155–3177 (2011). https://doi.org/10.1016/j.jcp.2011.01.018

    Article  MathSciNet  MATH  Google Scholar 

  5. Salas, M.: A Shock-Fitting Primer. CRC Press, Boca Raton (2009). https://doi.org/10.1201/9781439807590

    Book  Google Scholar 

  6. Emmons, H.W.: The Numerical solution of compressible fluid flow problems. Technical Report Archive & Image Library 932 (1944)

  7. Moretti, G., Abbett, M.: A time-dependent computational method for blunt body flows. AIAA J. 4(12), 2136–2141 (1966). https://doi.org/10.2514/3.3867

    Article  MATH  Google Scholar 

  8. Bleich, G., Moretti, G.: Three-dimensional flow around blunt bodies. AIAA J. 5(9), 1557–1562 (1967). https://doi.org/10.2514/3.55340

    Article  MATH  Google Scholar 

  9. Shubin, G.R., Stephens, A.B., Glaz, H.M., Wardlaw, A.B., Hackerman, L.B.: Steady shock tracking, Newton’s method, and the supersonic blunt body problem. SIAM J. Sci. Stat. Comput. 3(2), 127–144 (1982). https://doi.org/10.1137/0903009

    Article  MathSciNet  MATH  Google Scholar 

  10. Moretti, G.: Thoughts and Afterthoughts About Shock Computations. Polytechnic Institute of Brooklyn. PIBAL Report 72-37 (1972)

  11. Moretti, G.: Three-dimensional, supersonic, steady flows with any number of imbedded shocks. 12th Aerospace Sciences Meeting, Washington, DC, AIAA Paper 74-10 (1974). https://doi.org/10.2514/6.1974-10

  12. Moretti, G.: Computation of flows with shocks. Annu. Rev. Fluid Mech. 19, 313–337 (1987). https://doi.org/10.1146/annurev.fluid.19.1.313

    Article  Google Scholar 

  13. Marsilio, R., Moretti, G.: Shock-fitting method for two-dimensional inviscid, steady supersonic flows in ducts. Meccanica 24(4), 216–222 (1989). https://doi.org/10.1007/bf01556453

    Article  MathSciNet  Google Scholar 

  14. Onofri, M., Paciorri, R.: Shock Fitting: Classical Techniques, Recent Developments, and Memoirs of Gino Moretti. Springer, New York (2017). https://doi.org/10.1007/978-3-319-68427-7

    Book  MATH  Google Scholar 

  15. Paciorri, R., Bonfiglioli, A.: A shock-fitting technique for 2D unstructured grids. Comput. Fluids. 38, 715–726 (2009). https://doi.org/10.1016/j.compfluid.2008.07.007

    Article  MathSciNet  MATH  Google Scholar 

  16. Bonfiglioli, A., Paciorri, R., Campoli, L.: Unsteady shock-fitting for unstructured grids. Int. J. Numer. Methods Fluids 81(4), 245–261 (2016). https://doi.org/10.1002/fld.4183

    Article  MathSciNet  Google Scholar 

  17. Liu, J., Zou, D.Y., Xu, C.G.: An unsteady shock-fitting technique based on unstructured moving grids. Acta Aerodyn. Sin. 33(1), 10–16 (2015). https://doi.org/10.7638/kqdlxxb-2014.0109

    Article  Google Scholar 

  18. Liu, J., Zou, D.Y., Dong, H.B.: A moving discontinuity fitting technique to simulate shock waves impinged on a straight wall. Acta Aeronaut. Astronaut. Sin. 37, 836–846 (2016). https://doi.org/10.7527/S1000-6893.2015.0254

    Article  Google Scholar 

  19. Zou, D.Y., Xu, C.G., Dong, H.B., Liu, J.: A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes. J. Comput. Phys. 345, 866–882 (2017). https://doi.org/10.1016/j.jcp.2017.05.047

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, J., Zou, D.Y., Dong, H.B.: Principle of new discontinuity fitting technique based on unstructured moving grid. Phys. Gases 2, 13–20 (2017). https://doi.org/10.19527/j.cnki.2096-1642.2017.01.002

    Article  Google Scholar 

  21. Zou, D.Y., Liu, J., Zou, L.: Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods. Acta Aeronaut. Astronaut. Sin. 11, 121–363 (2017). https://doi.org/10.7527/S1000-6893.2017.121363

    Article  Google Scholar 

  22. Liu, J., Xu, C.G., Bai, X.Z.: Finite Volume Methods and Unstructured Dynamic Meshes. Science Press, Beijing (2016)

    Google Scholar 

  23. Lyubimov, A.N., Rusanov, V.V.: Gas flows past blunt bodies, part II: table of the gasdynamic functions. NASA. TT, F-715 (1973)

  24. Zhang, F., Liu, J., Chen, B.S., Zhong, W.X.: Evaluation of rotated upwind schemes for contact discontinuity and strong shock. Comput. Fluids 134, 11–22 (2016). https://doi.org/10.1016/j.compfluid.2016.05.010

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, F., Liu, J., Chen, B.S., Zhong, W.X.: A robust low-dissipation AUSM-family scheme for numerical shock stability on unstructured grids. Int. J. Numer. Methods Fluids 84(3), 135–151 (2017). https://doi.org/10.1002/fld.4341

    Article  MathSciNet  Google Scholar 

  26. Zhang, F., Liu, J., Chen, B.S.: Modified multi-dimensional limiting process with enhanced shock stability on unstructured grids. Comput. Fluids 161, 171–188 (2018). https://doi.org/10.1016/j.compfluid.2017.11.019

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Z.D., Zou, D.Y., Zhang, F., Liu, J.: A flow feature extraction method for shock-fitting computation. In: Proceedings of the Tenth International Conference on Computational Fluid Dynamics, Barcelona, Spain (2018)

  28. Liou, M.S.: A sequel to AUSM, Part II: \(\text{ AUSM }^{+}\)-up for all speeds. J. Comput. Phys. 214(1), 137–170 (2006). https://doi.org/10.1016/j.jcp.2005.09.020

    Article  MathSciNet  MATH  Google Scholar 

  29. Edney, B.: Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock. Flygtekniska Forsoksanstalten, Stockholm (1968)

    Google Scholar 

  30. Duquesne, N., Alziary de Roquefort, T.: Numerical investigation of a three-dimensional turbulent shock/shock interaction. 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 98-0774 (1998). https://doi.org/10.2514/6.1998-774

  31. Chang, S.Y., Zou, D.Y., Liu, J.: Simulating hypersonic projectile launching process in the ballistic range by Adaptive Discontinuity Fitting solver technique. J. Exp. Fluid Mech. 33(2), 23–29 (2019). https://doi.org/10.11729/syltlx20180104

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (Grant No. 11872144). Moreover, Fan Zhang at the School of Aeronautics and Astronautics, Sun Yat-sen University, is appreciated for offering advice on improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liu.

Additional information

Communicated by C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, S., Bai, X., Zou, D. et al. An adaptive discontinuity fitting technique on unstructured dynamic grids. Shock Waves 29, 1103–1115 (2019). https://doi.org/10.1007/s00193-019-00913-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00913-3

Keywords

Navigation