Skip to main content
Log in

Nonlinear subscale turbulent models for very large eddy simulation of turbulent flows

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A brief introduction of the time-filtered Navier–Stokes (TFNS) equations for very large eddy simulation (VLES) and its distinct features is presented. A set of nonlinear subscale models and their advantages over the linear subscale eddy viscosity models are described. A guideline for conducting a TFNS/VLES simulation is also provided. In this paper, we present simulations for three turbulent flows. The first one is the turbulent pipe flow at both low and high Reynolds numbers to illustrate the basic features of TFNS/VLES; the second one is the swirling turbulent flow in an LM6000 single injector to further demonstrate the differences between the results from nonlinear models versus linear viscosity models; the third one is a more complex turbulent flow generated in a single-element lean direct injection combustor, which demonstrates that the current TFNS/VLES approach is capable of predicting dynamically important, unsteady turbulent structures even with a relatively coarse mesh grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Liu, N.-S., Shih, T.-H.: Turbulence modeling for very large-eddy simulation. AIAA J. 44(4), 687–697 (2006). https://doi.org/10.2514/1.14452

    Article  Google Scholar 

  2. Shih, T.-H., Liu, N.-S.: Modeling of internal reacting flows and external static stall flows using RANS and TFNS. Flow Turbul. Combust. 81, 279–299 (2008). https://doi.org/10.1007/s10494-007-9097-z

    Article  MATH  Google Scholar 

  3. Davidson, L., Peng, S.H.: Hybrid LES–RANS modelling: a one-equation SGS model combined with a kω model for predicting recalculating flows. Int. J. Numer. Methods Fluids 43, 1003–1018 (2003). https://doi.org/10.1002/fld.512

    Article  MATH  Google Scholar 

  4. Larsson, J., Lien, F.S., Yee, E.: The artificial buffer layer and the effect of forcing in hybrid LES/RANS. Int. J. Heart Fluid Flow 28, 1443–1459 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2007.04.007

    Article  Google Scholar 

  5. Spalart, P.R., Jou, W.H., Allmaras, S.R.: Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: Advances in DNS/LES. Greyden Press, Dayton (1997)

  6. Fasel, H.F., von Terzi, D.A., Sandberg, R.D.: A methodology for simulating compressible turbulent flows. J. Appl. Mech. 73, 405–412 (2005). https://doi.org/10.1115/1.2150231

    Article  MATH  Google Scholar 

  7. Cabot, W., Moin, P.: Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63, 269–291 (2000). https://doi.org/10.1023/A:1009958917113

    Article  MATH  Google Scholar 

  8. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2006). https://doi.org/10.1007/b137536

    Book  MATH  Google Scholar 

  9. Shih, T.-H.: Constitutive relations and realizability of single-point turbulence closures. In: Hallback, M., Henningson, D.S., Johansson, A.V., Alfredsson, P.H. (eds.) Turbulence and Transition Modelling, Chapter 4. Kluwer, Dordrecht (1996). https://doi.org/10.1007/978-94-015-8666-5_4

    Chapter  Google Scholar 

  10. Shih, T.-H.: Mathematical modeling of turbulent flows. In: Daiguji, H., Miyake, Y., Kasagi, N. (eds.) Fluid Dynamics Research, vol. 20. Elsevier Science B.V. (1997)

  11. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–165 (1963). https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2

    Article  Google Scholar 

  12. Kim, W.-W., Menon, S., Mongia, H.C.: Large eddy simulation of gas turbine combustor flow. Combust. Sci. Technol. 143, 25–62 (1999). https://doi.org/10.1080/00102209908924192

    Article  Google Scholar 

  13. Shih, T.-H., Zhu, J., Liou, W., Chen, K-H., Liu, N-S., Lumley, J.L.: Modeling of Turbulent Swirling Flows. NASA/TM-113112 (1997)

  14. Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z., Zhu, J.: A new kε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids 24(3), 227–238 (1995). https://doi.org/10.1016/0045-7930(94)00032-T

    Article  MATH  Google Scholar 

  15. Tennekes, H., Lumley, J.L.: A First Course in Turbulence. MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  16. Zagarola, M., Smits, A., Orszag, S., Yakhot, V.: Experiments in high Reynolds number turbulent pipe flow. 34th Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 1996-654 (1997). https://doi.org/10.2514/6.1996-654

  17. Shih, T.-H., Liu, N.-S.: Assessment of the Partially Resolved Numerical Simulation (TFNS) approach in the National Combustion Code (NCC) for Turbulent Nonreacting and Reacting Flows, NASA/TM 2008-215418

  18. Shih, T.-H., Povinelli, L.A., Liu, N.-S.: Application of generalized wall function for complex turbulent flows. J. Turbul. 4, n15 (2003). https://doi.org/10.1088/1468-5248/4/1/015

    Article  Google Scholar 

  19. Shih, T.-H., Liu, N.-S.: Numerical Study of Outlet Boundary Conditions for Unsteady Turbulent Internal Flows Using the NCC, NASA/TM-2009-215486

  20. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1996). https://doi.org/10.1007/978-3-642-56026-2

    Book  MATH  Google Scholar 

  21. Grinstein, F.F., Oran, E.S., Boris, J.P.: Pressure field, feedback, and global instabilities of subsonic spatially developing mixing layers. Phys. Fluids A 3(10), 2401–2409 (1991). https://doi.org/10.1063/1.858178

    Article  MATH  Google Scholar 

  22. Davoudzadeh, F., Liu, N.-S., Moder, J.P.: Investigation of swirling air flows generated by axial swirls in a flame tube. Proceedings of GT2006 ASME Turbo Expo 2006: Power for Land, Sea, and Air May 8–11, 2006 Barcelona, Spain. https://doi.org/10.1115/gt2006-91300

  23. Cai, J., Jeng, S.-M., Tacina, R.: The structure of a swirl-stabilized reacting spray issued from an axial swirler. 43rd AIAA Aerospace Science Meeting and Exhibit, Reno, NV, AIAA Paper 2005-1424 (2005). https://doi.org/10.2514/6.2005-1424

Download references

Acknowledgements

This work is supported by the NASA Fundamental Aeronautics Program. The authors would like to thank Farhad Davoudzadeh for providing the numerical grid of the single-element LDI combustor. Authors would also like to thank Andrew Higgins and Chin-Hao Chang for their critical comments and detailed advice to our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-H. Shih.

Additional information

Communicated by C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, TH., Moder, J.P. & Liu, NS. Nonlinear subscale turbulent models for very large eddy simulation of turbulent flows. Shock Waves 29, 1155–1179 (2019). https://doi.org/10.1007/s00193-019-00915-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00915-1

Keywords

Navigation