Skip to main content
Log in

Gap-induced transition via oblique breakdown at Mach 6

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

It is well known that hypersonic boundary-layer transition is sensitive to a surface roughness since the roughness may either trigger an early transition or delay the transition. Hypersonic transition is still poorly understood as there are a very limited number of studies in the literature. In the present work, we conduct a computational study on the transition process of a hypersonic Mach 6 flow over a flat plate with a gap. An implicit large eddy simulation approach based on the flux reconstruction/correction procedure via a reconstruction method is used to investigate the interaction between the hypersonic boundary layer and a gap. Flow structures with and without the gap are compared to analyze the local skin friction coefficient overshoots before and after the gap. Two inlet angles of attack are investigated. The evolution of the skin friction coefficient shows that the gap has a very limited influence on the oblique transition at a zero angle of attack. In contrast, the gap can trigger an early transition at a negative angle of attack. In this case, the transverse feedback mechanism is believed to be the main cause, which amplifies the broadband instability waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kimmel, R.: Roughness considerations for HIFiRE-1 vehicle. 38th Fluid Dynamics Conference and Exhibit, Seattle, WA, AIAA Paper 2008–4293 (2008). https://doi.org/10.2514/6.2008-4293

  2. Kimmel, R.L., Adamczak, D.W., Borg, M.P., Jewell, J.S., Juliano, T.J., Stanfield, S., Berger, K.T.: HIFiRE-1 and -5 flight and ground tests. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2018-0056 (2018). https://doi.org/10.2514/6.2018-0056

  3. Rossiter, J.E.: Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Technical Report, Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough (1964)

  4. Heller, H.H., Bliss, D.B.: Flow-induced pressure fluctuations in cavities and concepts for their suppression. Aeroacoust. STOL Noise Airframe Airfoil Noise, AIAA Progress in Astronautics and Aeronautics, Vol. 45, 281–296 (1976). https://doi.org/10.2514/4.865190

  5. Zhang, X., Edwards, J.: An investigation of supersonic oscillatory cavity flows driven by thick shear layers. Aeronaut. J. 94(940), 355–364 (1990). https://doi.org/10.1017/S0001924000023319

    Article  Google Scholar 

  6. Tam, C.J., Orkwis, P.D., Disimile, P.J.: Algebraic turbulence model simulations of supersonic open-cavity flow physics. AIAA J. 34(11), 2255–2260 (1996). https://doi.org/10.2514/3.13388

    Article  Google Scholar 

  7. Li, W., Nonomura, T., Oyama, A., Fujii, K.: LES study of feedback-loop mechanism of supersonic open cavity flows. 40th Fluid Dynamics Conference and Exhibit, Chicago, IL, AIAA Paper 2010–5112 (2010). https://doi.org/10.2514/6.2010-5112

  8. Wang, H., Sun, M., Qin, N., Wu, H., Wang, Z.: Characteristics of oscillations in supersonic open cavity flows. Flow Turbul. Combust. 90(1), 121–142 (2013). https://doi.org/10.1007/s10494-012-9434-8

    Article  Google Scholar 

  9. Mack, L.M.: Boundary-layer linear stability theory. Technical Report, California Inst of Tech Pasadena Jet Propulsion Lab (1984)

  10. Marxen, O., Iaccarino, G., Shaqfeh, E.S.: Disturbance evolution in a Mach 4.8 boundary layer with two-dimensional roughness-induced separation and shock. J. Fluid Mech. 648, 435–469 (2010). https://doi.org/10.1017/S0022112009992758

    Article  MATH  Google Scholar 

  11. Marxen, O., Iaccarino, G., Shaqfeh, E.S.: Nonlinear instability of a supersonic boundary layer with two-dimensional roughness. J. Fluid Mech. 752, 497–520 (2014). https://doi.org/10.1017/jfm.2014.266

    Article  Google Scholar 

  12. Duan, L., Wang, X., Zhong, X.: A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness. J. Comput. Phys. 229(19), 7207–7237 (2010). https://doi.org/10.1016/j.jcp.2010.06.008

    Article  MATH  Google Scholar 

  13. Duan, L., Wang, X., Zhong, X.: Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness. AIAA J. 51(1), 266–270 (2012). https://doi.org/10.2514/1.J051643

    Article  Google Scholar 

  14. Fong, K.D., Wang, X., Zhong, X.: Numerical simulation of roughness effect on the stability of a hypersonic boundary layer. Comput. Fluids 96, 350–367 (2014). https://doi.org/10.1016/j.compfluid.2014.01.009

    Article  MathSciNet  MATH  Google Scholar 

  15. Sawaya, J., Sassanis, V., Yassir, S., Sescu, A., Visbal, M.: Assessment of the impact of two-dimensional wall deformation shape on high-speed boundary-layer disturbances. AIAA J. 56(12), 4787–4800 (2018). https://doi.org/10.2514/1.J057045

    Article  Google Scholar 

  16. Tang, Q., Zhu, Y., Chen, X., Lee, C.: Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness. Phys. Fluids 27(6), 064105 (2015). https://doi.org/10.1063/1.4922389

    Article  Google Scholar 

  17. Franko, K.J., Lele, S.K.: Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491–532 (2013). https://doi.org/10.1017/jfm.2013.350

    Article  MathSciNet  MATH  Google Scholar 

  18. Guvernyuk, S., Zubkov, A., Simonenko, M.: Experimental investigation of the supersonic flow over an axisymmetric ring cavity. J. Eng. Phys. Thermophys. 89(3), 678–687 (2016). https://doi.org/10.1007/s10891-016-1426-4

    Article  Google Scholar 

  19. Xiao, L., Xiao, Z., Duan, Z., Fu, S.: Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer. Int. J. Heat Fluid Flow 51, 138–150 (2015). https://doi.org/10.1016/j.ijheatfluidflow.2014.10.007

    Article  Google Scholar 

  20. Mohri, K., Hillier, R.: Computational and experimental study of supersonic flow over axisymmetric cavities. Shock Waves 21(3), 175–191 (2011). https://doi.org/10.1007/s00193-011-0312-4

    Article  Google Scholar 

  21. Mayer, C.S., Von Terzi, D.A., Fasel, H.F.: Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 5–42 (2011). https://doi.org/10.1017/S0022112010005094

    Article  MATH  Google Scholar 

  22. Yu, M., Luo, Js: Nonlinear evolution of Klebanoff type second mode disturbances in supersonic flat-plate boundary layer. Appl. Math. Mech. 35(3), 359–368 (2014). https://doi.org/10.1007/s10483-014-1796-8

    Article  MathSciNet  Google Scholar 

  23. Egorov, I., Fedorov, A., Soudakov, V.: Direct numerical simulation of disturbances generated by periodic suction-blowing in a hypersonic boundary layer. Theor. Comput. Fluid Dyn. 20(1), 41–54 (2006). https://doi.org/10.1007/s00162-005-0001-y

    Article  MATH  Google Scholar 

  24. Wang, X., Zhong, X., Ma, Y.: Response of a hypersonic boundary layer to wall blowing-suction. AIAA J. 49(7), 1336–1353 (2011). https://doi.org/10.2514/1.J050173

    Article  Google Scholar 

  25. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, AIAA Paper 2007-4079 (2007). https://doi.org/10.2514/6.2007-4079

  26. Wang, Z.J., Gao, H.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228(21), 8161–8186 (2009). https://doi.org/10.1016/j.jcp.2009.07.036

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Y., Wang, Z.J.: A convergent and accuracy preserving limiter for the FR/CPR method. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017-0756 (2017). https://doi.org/10.2514/6.2017-0756

  28. Wang, Z., Li, Y., Jia, F., Laskowski, G., Kopriva, J., Paliath, U., Bhaskaran, R.: Towards industrial large eddy simulation using the FR/CPR method. Comput. Fluids 156, 579–589 (2017). https://doi.org/10.1016/j.compfluid.2017.04.026

    Article  MathSciNet  MATH  Google Scholar 

  29. Haga, T., Gao, H., Wang, Z.J.: A high-order unifying discontinuous formulation for the Navier–Stokes equations on 3D mixed grids. Math. Model. Nat. Phenom. 6(3), 28–56 (2011). https://doi.org/10.1051/mmnp/20116302

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Z., Gao, H., Haga, T.: A unifying discontinuous CPR formulation for the Navier–Stokes equations on mixed grids. Computational Fluid Dynamics 2010, pp. 59–65. Springer (2011). https://doi.org/10.1007/978-3-642-17884-9_5

    Chapter  Google Scholar 

  31. Huynh, H., Wang, Z.J., Vincent, P.E.: High-order methods for computational fluid dynamics: A brief review of compact differential formulations on unstructured grids. Comput. Fluids 98, 209–220 (2014). https://doi.org/10.1016/j.compfluid.2013.12.007

    Article  MathSciNet  MATH  Google Scholar 

  32. Park, J.S., You, H., Kim, C.: Higher-order multi-dimensional limiting process for DG and FR/CPR methods on tetrahedral meshes. Comput. Fluids 154, 322–334 (2017). https://doi.org/10.1016/j.compfluid.2017.03.006

    Article  MathSciNet  MATH  Google Scholar 

  33. Vermeire, B.C., Witherden, F.D., Vincent, P.E.: On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools. J. Comput. Phys. 334, 497–521 (2017). https://doi.org/10.1016/j.jcp.2016.12.049

    Article  MathSciNet  Google Scholar 

  34. Wang, Z.: A perspective on high-order methods in computational fluid dynamics. Sci. China Phys. Mech. Astron. 59(1), 614701 (2016). https://doi.org/10.1007/s11433-015-5706-3

    Article  Google Scholar 

  35. Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flows. Discontinuous Galerkin Methods, pp. 77–88. Springer (2000). https://doi.org/10.1007/978-3-642-59721-3_4

    Google Scholar 

  36. Sun, Y., Wang, Z., Liu, Y.: Efficient implicit non-linear LU-SGS approach for viscous flow computation using high-order spectral difference method. 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, AIAA Paper 2007-4322 (2007). https://doi.org/10.2514/6.2007-4322

  37. Ren, J., Fu, S.: Competition of the multiple Görtler modes in hypersonic boundary layer flows. Sci. China Phys. Mech. Astron. 57(6), 1178–1193 (2014). https://doi.org/10.1007/s11433-014-5454-9

    Article  Google Scholar 

  38. Shadloo, M., Hadjadj, A.: Laminar–turbulent transition in supersonic boundary layers with surface heat transfer: A numerical study. Numer. Heat Transf. A Appl. 72(1), 40–53 (2017). https://doi.org/10.1080/10407782.2017.1353380

    Article  Google Scholar 

  39. Pirozzoli, S., Grasso, F., Gatski, T.: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16(3), 530–545 (2004). https://doi.org/10.1063/1.1637604

    Article  MATH  Google Scholar 

  40. Huai, X., Joslin, R.D., Piomelli, U.: Large-eddy simulation of transition to turbulence in boundary layers. Theor. Comput. Fluid Dyn. 9(2), 149–163 (1997). https://doi.org/10.1007/s001620050037

    Article  MATH  Google Scholar 

  41. Hunt, J.C., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program, pp. 193–208 (1988)

  42. Tsuji, Y., Fransson, J.H., Alfredsson, P.H., Johansson, A.V.: Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 1–40 (2007). https://doi.org/10.1017/S0022112007006076

    Article  MATH  Google Scholar 

  43. Zhang, C., Duan, L., Choudhari, M.M.: Effect of wall cooling on boundary-layer-induced pressure fluctuations at Mach 6. J. Fluid Mech. 822, 5–30 (2017). https://doi.org/10.1017/jfm.2017.212

    Article  MathSciNet  MATH  Google Scholar 

  44. White, F.M., Corfield, I.: Viscous Fluid Flow, vol. 3. McGraw-Hill, New York (2006)

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges the support by the Tsinghua Scholarship for Overseas Graduate Studies and thanks the University of Kansas (KU) for hosting her visit to KU. This work is also partly supported by NSFC Grant 11572176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fu.

Additional information

Communicated by C.-H. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Wang, L., Wang, Z.J. et al. Gap-induced transition via oblique breakdown at Mach 6. Shock Waves 29, 1181–1190 (2019). https://doi.org/10.1007/s00193-019-00926-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-019-00926-y

Keywords

Navigation