Skip to main content
Log in

Constraints on active and sterile neutrinos in an interacting dark energy cosmology

  • Article
  • Special Topic: Physics Behind the H0 Tension
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We investigate the impacts of dark energy on constraining massive (active/sterile) neutrinos in interacting dark energy (IDE) models by using the current observations. We employ two typical IDE models, the interacting w cold dark matter (IwCDM) model and the interacting holographic dark energy (IHDE) model, to make an analysis. To avoid large-scale instability, we use the parameterized post-Friedmann approach to calculate the cosmological perturbations in the IDE models. The cosmological observational data used in this work include the Planck cosmic microwave background (CMB) anisotropies data, the baryon acoustic oscillation data, the type Ia supernovae data, the direct measurement of the Hubble constant, the weak lensing data, the redshift-space distortion data, and the CMB lensing data. We find that the dark energy properties could influence the constraint limits of active neutrino mass and sterile neutrino parameters in the IDE models. We also find that the dark energy properties could influence the constraints on the coupling strength parameter γ and a positive coupling constant, γ > 0, can be detected at the 2.5σ statistical significance for the IHDE+vs model by using the all-data combination. In addition, we also discuss the “Hubble tension” issue in these scenarios. We find that the H0 tension can be effectively relieved by considering massive sterile neutrinos, and in particular in the IHDE+vs model the H0 tension can be reduced to be at the 1.28σ level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lesgourgues, and S. Pastor, Phys. Rep. 429, 307 (2006), arXiv: astro-ph/0603494.

    ADS  Google Scholar 

  2. Z. Z. Xing, arXiv: 1909.09610.

  3. K. N. Abazajian, M. A. Acero, S. K. Agarwalla, A. A. Aguilar-Arevalo, C. H. Albright, S. Antusch, C. A. Arguelles, A. B. Balantekin, G. Barenboim, V. Barger, P. Bernardini, F. Bezrukov, O. E. Bjaelde, S. A. Bogacz, N. S. Bowden, A. Boyarsky, A. Bravar, D. Bravo Berguno, S. J. Brice, A. D. Bross, B. Caccianiga, F. Cavanna, E. J. Chun, B. T. Cleveland, A. P. Collin, P. Coloma, J. M. Conrad, M. Cribier, A. S. Cucoanes, J. C. D’Olivo, S. Das, A. de Gouvea, A. V. Derbin, R. Dharmapalan, J. S. Diaz, X. J. Ding, Z. Djurcic, A. Donini, D. Duchesneau, H. Ejiri, S. R. Elliott, D. J. Ernst, A. Esmaili, J. J. Evans, E. Fernandez-Martinez, E. Figueroa-Feliciano, B. T. Fleming, J. A. Formaggio, D. Franco, J. Gaffiot, R. Gandhi, Y. Gao, G. T. Garvey, V. N. Gavrin, P. Ghoshal, D. Gibin, C. Giunti, S. N. Gninenko, V. V. Gorbachev, D. S. Gorbunov, R. Guenette, A. Guglielmi, F. Halzen, J. Hamann, S. Hannestad, W. Haxton, K. M. Heeger, R. Henning, P. Hernandez, P. Huber, W. Huelsnitz, A. Ianni, T. V. Ibragimova, Y. Karadzhov, G. Karagiorgi, G. Keefer, Y. D. Kim, J. Kopp, V. N. Kornoukhov, A. Kusenko, P. Kyberd, P. Langacker, Th. Lasserre, M. Laveder, A. Letourneau, D. Lhuillier, Y. F. Li, M. Lindner, J. M. Link, B. L. Littlejohn, P. Lombardi, K. Long, J. Lopez-Pavon, W. C. Louis, L. Ludhova, J. D. Lykken, P. A. N. Machado, M. Maltoni, W. A. Mann, D. Marfatia, C. Mariani, V. A. Matveev, N. E. Mavromatos, A. Melchiorri, D. Meloni, O. Mena, G. Mention, A. Merle, E. Meroni, M. Mezzetto, G. B. Mills, D. Minic, L. Miramonti, D. Mohapatra, R. N. Mohapatra, C. Montanari, Y. Mori, Th. A. Mueller, H. P. Mumm, V. Muratova, A. E. Nelson, J. S. Nico, E. Noah, J. Nowak, O. Yu. Smirnov, M. Obolensky, S. Pakvasa, O. Palamara, M. Pallavicini, S. Pascoli, L. Patrizii, Z. Pavlovic, O. L. G. Peres, H. Pessard, F. Pietropaolo, M. L. Pitt, M. Popovic, J. Pradler, G. Ranucci, H. Ray, S. Razzaque, B. Rebel, R. G. H. Robertson, W. Rodejohann, S. D. Rountree, C. Rubbia, O. Ruchayskiy, P. R. Sala, K. Scholberg, T. Schwetz, M. H. Shaevitz, M. Shaposhnikov, R. Shrock, S. Simone, M. Skorokhvatov, M. Sorel, A. Sousa, D. N. Spergel, J. Spitz, L. Stanco, I. Stancu, A. Suzuki, T. Takeuchi, I. Tamborra, J. Tang, G. Testera, X. C. Tian, A. Tonazzo, C. D. Tunnell, R. G. Van de Water, L. Verde, E. P. Veretenkin, C. Vignoli, M. Vivier, R. B. Vogelaar, M. O. Wascko, J. F. Wilkerson, W. Winter, Y. Y. Y. Wong, T. T. Yanagida, O. Yasuda, M. Yeh, F. Yermia, Z. W. Yokley, G. P. Zeller, L. Zhan, and H. Zhang, arXiv: 1204.5379.

  4. S. Hannestad, I. Tamborra, and T. Tram, J. Cosmol. Astropart. Phys. 7, 025 (2012), arXiv: 1204.5861.

    ADS  Google Scholar 

  5. J. M. Conrad, W. C. Louis, and M. H. Shaevitz, Annu. Rev. Nucl. Part. Sci. 63, 45 (2013), arXiv: 1306.6494.

    ADS  Google Scholar 

  6. N. Aghanim, et al. (Planck Collaboration), Astron. Astrophys. 594, A11 (2016), arXiv: 1507.02704.

    Google Scholar 

  7. F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, Mon. Not. R. Astron. Soc. 416, 3017 (2011), arXiv: 1106.3366.

    ADS  Google Scholar 

  8. A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, Mon. Not. R. Astron. Soc. 449, 835 (2015), arXiv: 1409.3242.

    ADS  Google Scholar 

  9. A. J. Cuesta, M. Vargas-Magaña, F. Beutler, A. S. Bolton, J. R. Brownstein, D. J. Eisenstein, Hctor Gil-Marłn, S. Ho, C. K. McBride, C. Maraston, N. Padmanabhan, W. J. Percival, B. A. Reid, A. J. Ross, N. P. Ross, A. G. Sønchez, D. J. Schlegel, D. P. Schneider, D. Thomas, J. Tinker, R. Tojeiro, L. Verde, and M. White, Mon. Not. R. Astron. Soc. 457, 1770 (2016), arXiv: 1509.06371.

    ADS  Google Scholar 

  10. M. Betoule, R. Kessler, J. Guy, J. Mosher, D. Hardin, R. Biswas, P. Astier, P. El-Hage, M. Konig, S. Kuhlmann, J. Marriner, R. Pain, N. Regnault, C. Balland, B. A. Bassett, P. J. Brown, H. Campbell, R. G. Carlberg, F. Cellier-Holzem, D. Cinabro, A. Conley, C. B. D’Andrea, D. L. DePoy, M. Doi, R. S. Ellis, S. Fabbro, A. V. Filippenko, R. J. Foley, J. A. Frieman, D. Fouchez, L. Galbany, A. Goobar, R. R. Gupta, G. J. Hill, R. Hlozek, C. J. Hogan, I. M. Hook, D. A. Howell, S. W. Jha, L. Le Guillou, G. Leloudas, C. Lidman, J. L. Marshall, A. Möller, A. M. Mourão, J. Neveu, R. Nichol, M. D. Olmstead, N. Palanque-Delabrouille, S. Perlmutter, J. L. Prieto, C. J. Pritchet, M. Richmond, A. G. Riess, V. Ruhlmann-Kleider, M. Sako, K. Schahmaneche, D. P. Schneider, M. Smith, J. Sollerman, M. Sullivan, N. A. Walton, and C. J. Wheeler, Astron. Astrophys. 568, A22 (2014), arXiv: 1401.4064.

    Google Scholar 

  11. A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, S. Casertano, A. V. Filippenko, B. E. Tucker, M. J. Reid, D. O. Jones, J. M. Silverman, R. Chornock, P. Challis, W. Yuan, P. J. Brown, and R. J. Foley, Astrophys. J. 826, 56 (2016), arXiv: 1604.01424.

    ADS  Google Scholar 

  12. P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 594, A15 (2016), arXiv: 1502.01591.

    Google Scholar 

  13. X. Zhang, Phys. Rev. D 93, 083011 (2016), arXiv: 1511.02651.

    ADS  Google Scholar 

  14. L. Feng, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 61, 050411 (2018), arXiv: 1706.06913.

    ADS  Google Scholar 

  15. M. C. Gonzalez-Garcia, and M. Maltoni, Phys. Rep. 460, 1 (2008), arXiv: 0704.1800.

    ADS  Google Scholar 

  16. H. Li, and X. Zhang, Phys. Lett. B 713, 160 (2012), arXiv: 1202.4071.

    ADS  Google Scholar 

  17. Y. H. Li, S. Wang, X. D. Li, and X. Zhang, J. Cosmol. Astropart. Phys. 1302, 033 (2013), arXiv: 1207.6679.

    ADS  Google Scholar 

  18. X. Wang, X. L. Meng, T. J. Zhang, H. Shan, Y. Gong, C. Tao, X. Chen, and Y. F. Huang, J. Cosmol. Astropart. Phys. 1211, 018 (2012), arXiv: 1210.2136.

    ADS  Google Scholar 

  19. T. D. Jacques, L. M. Krauss, and C. Lunardini, Phys. Rev. D 87, 083515 (2013), arXiv: 1301.3119.

    ADS  Google Scholar 

  20. A. Mirizzi, G. Mangano, N. Saviano, E. Borriello, C. Giunti, G. Miele, and O. Pisanti, Phys. Lett. B 726, 8 (2013), arXiv: 1303.5368.

    ADS  Google Scholar 

  21. M. Drewes, Int. J. Mod. Phys. E 22, 1330019 (2013), arXiv: 1303.6912.

    ADS  Google Scholar 

  22. J. Hamann, and J. Hasenkamp, J. Cosmol. Astropart. Phys. 1310, 044 (2013), arXiv: 1308.3255.

    ADS  Google Scholar 

  23. M. Wyman, D. H. Rudd, R. A. Vanderveld, and W. Hu, Phys. Rev. Lett. 112, 051302 (2014), arXiv: 1307.7715.

    ADS  Google Scholar 

  24. R. A. Battye, and A. Moss, Phys. Rev. Lett. 112, 051303 (2014), arXiv: 1308.5870.

    ADS  Google Scholar 

  25. E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri, and O. Mena, Phys. Rev. D 90, 043507 (2014), arXiv: 1403.4852.

    ADS  Google Scholar 

  26. C. Dvorkin, M. Wyman, D. H. Rudd, and W. Hu, Phys. Rev. D 90, 083503 (2014), arXiv: 1403.8049.

    ADS  Google Scholar 

  27. J. Lesgourgues, and S. Pastor, New J. Phys. 16, 065002 (2014), arXiv: 1404.1740.

    ADS  Google Scholar 

  28. M. Archidiacono, N. Fornengo, S. Gariazzo, C. Giunti, S. Hannestad, and M. Laveder, J. Cosmol. Astropart. Phys. 1406, 031 (2014), arXiv: 1404.1794.

    ADS  Google Scholar 

  29. B. Leistedt, H. V. Peiris, and L. Verde, Phys. Rev. Lett. 113, 041301 (2014), arXiv: 1404.5950.

    ADS  Google Scholar 

  30. J. F. Zhang, Y. H. Li, and X. Zhang, Eur. Phys. J. C 74, 2954 (2014), arXiv: 1404.3598.

    ADS  Google Scholar 

  31. M. Costanzi, B. Sartoris, M. Viel, and S. Borgani, J. Cosmol. Astropart. Phys. 1410, 081 (2014), arXiv: 1407.8338.

    ADS  Google Scholar 

  32. J. F. Zhang, Y. H. Li, and X. Zhang, Phys. Lett. B 739, 102 (2014), arXiv: 1408.4603.

    ADS  Google Scholar 

  33. J. F. Zhang, Y. H. Li, and X. Zhang, Phys. Lett. B 740, 359 (2015), arXiv: 1403.7028.

    ADS  Google Scholar 

  34. H. M. Zhu, U. L. Pen, X. Chen, and D. Inman, Phys. Rev. Lett. 116, 141301 (2016), arXiv: 1412.1660.

    ADS  Google Scholar 

  35. Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Lett. B 744, 213 (2015), arXiv: 1502.01136.

    ADS  Google Scholar 

  36. J. F. Zhang, M. M. Zhao, Y. H. Li, and X. Zhang, J. Cosmol. Astropart. Phys. 1504, 038 (2015), arXiv: 1502.04028.

    ADS  Google Scholar 

  37. C. Q. Geng, C. C. Lee, R. Myrzakulov, M. Sami, and E. N. Saridakis, J. Cosmol. Astropart. Phys. 1601, 049 (2016), arXiv: 1504.08141.

    ADS  Google Scholar 

  38. X. Qian, and P. Vogel, Prog. Particle Nucl. Phys. 83, 1 (2015), arXiv: 1505.01891.

    ADS  Google Scholar 

  39. S. Dell’Oro, S. Marcocci, M. Viel, and F. Vissani, J. Cosmol. Astropart. Phys. 1512, 023 (2015), arXiv: 1505.02722.

    ADS  Google Scholar 

  40. R. B. Patterson, Annu. Rev. Nucl. Part. Sci. 65, 177 (2015), arXiv: 1506.07917.

    ADS  Google Scholar 

  41. S. Gariazzo, C. Giunti, M. Laveder, Y. F. Li, and E. M. Zavanin, J. Phys. G 43, 033001 (2016), arXiv: 1507.08204.

    ADS  Google Scholar 

  42. Q. G. Huang, K. Wang, and S. Wang, Eur. Phys. J. C 76, 489 (2016), arXiv: 1512.05899.

    ADS  Google Scholar 

  43. F. Capozzi, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo, Nucl. Phys. B 908, 218 (2016), arXiv: 1601.07777.

    ADS  Google Scholar 

  44. E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, and K. Freese, Phys. Rev. D 94, 083522 (2016), arXiv: 1605.04320.

    ADS  Google Scholar 

  45. E. Di Valentino, A. Melchiorri, and J. Silk, Phys. Lett. B 761, 242 (2016), arXiv: 1606.00634.

    ADS  Google Scholar 

  46. J. Lu, M. Liu, Y. Wu, Y. Wang, and W. Yang, Eur. Phys. J. C 76, 679 (2016), arXiv: 1606.02987.

    ADS  Google Scholar 

  47. S. Wang, Y. F. Wang, D. M. Xia, and X. Zhang, Phys. Rev. D 94, 083519 (2016), arXiv: 1608.00672.

    ADS  Google Scholar 

  48. M. M. Zhao, Y. H. Li, J. F. Zhang, and X. Zhang, Mon. Not. R. Astron. Soc. 469, 1713 (2017), arXiv: 1608.01219.

    ADS  Google Scholar 

  49. L. X. Xu, and Q. G. Huang, Sci. China-Phys. Mech. Astron. 61, 039521 (2018), arXiv: 1611.05178.

    ADS  Google Scholar 

  50. S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, and M. Lattanzi, Phys. Rev. D 96, 123503 (2017), arXiv: 1701.08172.

    ADS  Google Scholar 

  51. R. Y. Guo, Y. H. Li, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 1705, 040 (2017), arXiv: 1702.04189.

    ADS  Google Scholar 

  52. E. K. Li, H. Zhang, M. Du, Z. H. Zhou, and L. Xu, J. Cosmol. Astropart. Phys. 1808, 042 (2018), arXiv: 1703.01554.

    ADS  Google Scholar 

  53. W. Yang, R. C. Nunes, S. Pan, and D. F. Mota, Phys. Rev. D 95, 103522 (2017), arXiv: 1703.02556.

    ADS  Google Scholar 

  54. F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri, and A. Palazzo, Phys. Rev. D 95, 096014 (2017), arXiv: 1703.04471.

    ADS  Google Scholar 

  55. L. Feng, J. F. Zhang, and X. Zhang, Eur. Phys. J. C 77, 418 (2017), arXiv: 1703.04884.

    ADS  Google Scholar 

  56. M. M. Zhao, D. Z. He, J. F. Zhang, and X. Zhang, Phys. Rev. D 96, 043520 (2017), arXiv: 1703.08456.

    ADS  Google Scholar 

  57. K. N. Abazajian, Phys. Rep. 711-712, 1 (2017), arXiv: 1705.01837.

    ADS  Google Scholar 

  58. S. Wang, Y. F. Wang, and D. M. Xia, Chin. Phys. C 42, 065103 (2018), arXiv: 1707.00588.

    ADS  Google Scholar 

  59. M. M. Zhao, J. F. Zhang, and X. Zhang, Phys. Lett. B 779, 473 (2018), arXiv: 1710.02391.

    ADS  Google Scholar 

  60. L. Feng, J. F. Zhang, and X. Zhang, Phys. Dark Universe 23, 100261 (2019), arXiv: 1712.03148.

    ADS  Google Scholar 

  61. L. F. Wang, X. N. Zhang, J. F. Zhang, and X. Zhang, Phys. Lett. B 782, 87 (2018), arXiv: 1802.04720.

    ADS  Google Scholar 

  62. R. Y. Guo, J. F. Zhang, and X. Zhang, Chin. Phys. C 42, 095103 (2018), arXiv: 1803.06910.

    ADS  Google Scholar 

  63. R. Y. Guo, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 1902, 054 (2019), arXiv: 1809.02340.

    ADS  Google Scholar 

  64. M. M. Zhao, R. Y. Guo, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 63, 230412 (2020), arXiv: 1810.11658.

    ADS  Google Scholar 

  65. L. Feng, H. L. Li, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 63, 220401 (2020), arXiv: 1903.08848.

    Google Scholar 

  66. J. F. Zhang, B. Wang, and X. Zhang, Sci. China-Phys. Mech. Astron. 63, 280411 (2020), arXiv: 1907.00179.

    Google Scholar 

  67. D. Comelli, M. Pietroni, and A. Riotto, Phys. Lett. B 571, 115 (2003), arXiv: hep-ph/0302080.

    MathSciNet  ADS  Google Scholar 

  68. R. G. Cai, and A. Wang, J. Cosmol. Astropart. Phys. 0503, 002 (2005), arXiv: hep-th/0411025.

    ADS  Google Scholar 

  69. X. Zhang, F. Q. Wu, and J. Zhang, J. Cosmol. Astropart. Phys. 0601, 003 (2006) arXiv: astro-ph/0411221.

    ADS  Google Scholar 

  70. X. Zhang, Mod. Phys. Lett. A 20, 2575 (2005), arXiv: astro-ph/0503072.

    ADS  Google Scholar 

  71. W. Zimdahl, Int. J. Mod. Phys. D 14, 2319 (2005), arXiv: grqc/0505056.

    ADS  Google Scholar 

  72. B. Wang, J. Zang, C. Y. Lin, E. Abdalla, and S. Micheletti, Nucl. Phys. B 778, 69 (2007), arXiv: astro-ph/0607126.

    ADS  Google Scholar 

  73. Z. K. Guo, N. Ohta, and S. Tsujikawa, Phys. Rev. D 76, 023508 (2007), arXiv: astro-ph/0702015.

    ADS  Google Scholar 

  74. J. Zhang, X. Zhang, and H. Liu, Phys. Lett. B 659, 26 (2008), arXiv: 0705.4145.

    ADS  Google Scholar 

  75. J. H. He, and B. Wang, J. Cosmol. Astropart. Phys. 0806, 010 (2008), arXiv: 0801.4233.

    ADS  Google Scholar 

  76. M. Li, X. D. Li, S. Wang, Y. Wang, and X. Zhang, J. Cosmol. Astropart. Phys. 0912, 014 (2009), arXiv: 0910.3855.

    ADS  Google Scholar 

  77. L. Zhang, J. Cui, J. Zhang, and X. Zhang, Int. J. Mod. Phys. D 19, 21 (2010), arXiv: 0911.2838.

    ADS  Google Scholar 

  78. J. H. He, B. Wang, and E. Abdalla, Phys. Rev. D 83, 063515 (2011), arXiv: 1012.3904.

    ADS  Google Scholar 

  79. Y. Chen, Z. H. Zhu, L. Xu, and J. S. Alcaniz, Phys. Lett. B 698, 175 (2011), arXiv: 1103.2512.

    ADS  Google Scholar 

  80. Y. H. Li, and X. Zhang, Eur. Phys. J. C 71, 1700 (2011), arXiv: 1103.3185.

    ADS  Google Scholar 

  81. T. Clemson, K. Koyama, G. B. Zhao, R. Maartens, and J. Valiviita, Phys. Rev. D 85, 043007 (2012), arXiv: 1109.6234.

    ADS  Google Scholar 

  82. T. F. Fu, J. F. Zhang, J. Q. Chen, and X. Zhang, Eur. Phys. J. C 72, 1932 (2012), arXiv: 1112.2350.

    ADS  Google Scholar 

  83. Z. Zhang, S. Li, X. D. Li, X. Zhang, and M. Li, J. Cosmol. Astropart. Phys. 1206, 009 (2012), arXiv: 1204.6135.

    ADS  Google Scholar 

  84. V. Salvatelli, A. Marchini, L. Lopez-Honorez, and O. Mena, Phys. Rev. D 88, 023531 (2013), arXiv: 1304.7119.

    ADS  Google Scholar 

  85. X. D. Xu, B. Wang, P. Zhang, and F. Atrio-Barandela, J. Cosmol. Astropart. Phys. 1312, 001 (2013), arXiv: 1308.1475.

    ADS  Google Scholar 

  86. M. J. Zhang, and W. B. Liu, Eur. Phys. J. C 74, 2863 (2014), arXiv: 1312.0224.

    ADS  Google Scholar 

  87. Y. H. Li, and X. Zhang, Phys. Rev. D 89, 083009 (2014), arXiv: 1312.6328.

    ADS  Google Scholar 

  88. W. Yang, and L. Xu, Phys. Rev. D 89, 083517 (2014), arXiv: 1401.1286.

    ADS  Google Scholar 

  89. W. Yang, and L. Xu, J. Cosmol. Astropart. Phys. 1408, 034 (2014), arXiv: 1401.5177.

    ADS  Google Scholar 

  90. J. J. Geng, Y. H. Li, J. F. Zhang, and X. Zhang, Eur. Phys. J. C 75, 356 (2015), arXiv: 1501.03874.

    ADS  Google Scholar 

  91. D. G. A. Duniya, D. Bertacca, and R. Maartens, Phys. Rev. D 91, 063530 (2015), arXiv: 1502.06424.

    ADS  Google Scholar 

  92. J. L. Cui, L. Yin, L. F. Wang, Y. H. Li, and X. Zhang, J. Cosmol. Astropart. Phys. 1509, 024 (2015), arXiv: 1503.08948.

    ADS  Google Scholar 

  93. R. Murgia, S. Gariazzo, and N. Fornengo, J. Cosmol. Astropart. Phys. 1604, 014 (2016), arXiv: 1602.01765.

    ADS  Google Scholar 

  94. B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavon, Rept. Prog. Phys. 79, 096901 (2016), arXiv: 1603.08299.

    ADS  Google Scholar 

  95. A. Pourtsidou, and T. Tram, Phys. Rev. D 94, 043518 (2016), arXiv: 1604.04222.

    ADS  Google Scholar 

  96. A. A. Costa, X. D. Xu, B. Wang, and E. Abdalla, J. Cosmol. Astropart. Phys. 1701, 028 (2017), arXiv: 1605.04138.

    ADS  Google Scholar 

  97. L. Feng, and X. Zhang, J. Cosmol. Astropart. Phys. 1608, 072 (2016), arXiv: 1607.05567.

    ADS  Google Scholar 

  98. D. M. Xia, and S. Wang, Mon. Not. R. Astron. Soc. 463, 952 (2016), arXiv: 1608.04545.

    ADS  Google Scholar 

  99. C. van de Bruck, J. Mifsud, and J. Morrice, Phys. Rev. D 95, 043513 (2017), arXiv: 1609.09855.

    ADS  Google Scholar 

  100. J. Solè Peracaula, J. d. C. Perez, and A. Gomez-Valent, Mon. Not. R. Astron. Soc. 478, 4357 (2018), arXiv: 1703.08218.

    ADS  Google Scholar 

  101. W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi, and D. F. Mota, J. Cosmol. Astropart. Phys. 1809, 019 (2018), arXiv: 1805.08252.

    ADS  Google Scholar 

  102. J. J. Guo, J. F. Zhang, Y. H. Li, D. Z. He, and X. Zhang, Sci. China-Phys. Mech. Astron. 61, 030011 (2018), arXiv: 1710.03068.

    ADS  Google Scholar 

  103. H. L. Li, L. Feng, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 62, 120411 (2019), arXiv: 1812.00319.

    ADS  Google Scholar 

  104. X. Zhang, and F. Q. Wu, Phys. Rev. D 72, 043524 (2005), arXiv: astro-ph/0506310.

    ADS  Google Scholar 

  105. Z. Chang, F. Q. Wu, and X. Zhang, Phys. Lett. B 633, 14 (2006), arXiv: astro-ph/0509531.

    ADS  Google Scholar 

  106. X. Zhang, Phys. Rev. D 74, 103505 (2006), arXiv: astro-ph/0609699.

    ADS  Google Scholar 

  107. X. Zhang, Phys. Lett. B 648, 1 (2007), arXiv: astro-ph/0604484.

    ADS  Google Scholar 

  108. X. Zhang, and F. Q. Wu, Phys. Rev. D 76, 023502 (2007), arXiv: astro-ph/0701405.

    ADS  Google Scholar 

  109. J. Zhang, X. Zhang, and H. Liu, Phys. Lett. B 651, 84 (2007), arXiv: 0706.1185.

    MathSciNet  ADS  Google Scholar 

  110. J. Zhang, X. Zhang, and H. Liu, Eur. Phys. J. C 52, 693 (2007), arXiv: 0708.3121.

    ADS  Google Scholar 

  111. Y. Z. Ma, and X. Zhang, Phys. Lett. B 661, 239 (2008), arXiv: 0709.1517.

    ADS  Google Scholar 

  112. M. Li, X. D. Li, S. Wang, and X. Zhang, J. Cosmol. Astropart. Phys. 0906, 036 (2009), arXiv: 0904.0928.

    ADS  Google Scholar 

  113. X. Zhang, Phys. Lett. B 683, 81 (2010), arXiv: 0909.4940.

    ADS  Google Scholar 

  114. J. Cui, and X. Zhang, Phys. Lett. B 690, 233 (2010), arXiv: 1005.3587.

    ADS  Google Scholar 

  115. K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012), arXiv: 1205.3421.

    ADS  Google Scholar 

  116. S. Wang, Y. Wang, and M. Li, Phys. Rep. 696, 1 (2017), arXiv: 1612.00345.

    MathSciNet  ADS  Google Scholar 

  117. G. B. Zhao, J. Q. Xia, M. Li, B. Feng, and X. Zhang, Phys. Rev. D 72, 123515 (2005), arXiv: astro-ph/0507482.

    ADS  Google Scholar 

  118. J. Valiviita, E. Majerotto, and R. Maartens, J. Cosmol. Astropart. Phys. 0807, 020 (2008), arXiv: 0804.0232.

    ADS  Google Scholar 

  119. J. H. He, B. Wang, and E. Abdalla, Phys. Lett. B 671, 139 (2009), arXiv: 0807.3471.

    ADS  Google Scholar 

  120. Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D 90, 063005 (2014), arXiv: 1404.5220.

    ADS  Google Scholar 

  121. Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D 90, 123007 (2014), arXiv: 1409.7205.

    ADS  Google Scholar 

  122. Y. H. Li, J. F. Zhang, and X. Zhang, Phys. Rev. D 93, 023002 (2016), arXiv: 1506.06349.

    ADS  Google Scholar 

  123. W. Hu, Phys. Rev. D 77, 103524 (2008), arXiv: 0801.2433.

    ADS  Google Scholar 

  124. W. Fang, W. Hu, and A. Lewis, Phys. Rev. D 78, 087303 (2008), arXiv: 0808.3125.

    ADS  Google Scholar 

  125. A. Lewis, and S. Bridle, Phys. Rev. D 66, 103511 (2002), arXiv: astro-ph/0205436.

    ADS  Google Scholar 

  126. H. Gil-Marín, W. J. Percival, L. Verde, J. R. Brownstein, C. H. Chuang, F. S. Kitaura, S. A. Rodríguez-Torres, and M. D. Olmstead, Mon. Not. R. Astron. Soc. 465, 1757 (2017), arXiv: 1606.00439.

    ADS  Google Scholar 

  127. C. Heymans, E. Grocutt, A. Heavens, M. Kilbinger, T. D. Kitching, F. Simpson, J. Benjamin, T. Erben, H. Hildebrandt, H. Hoekstra, Y. Mellier, L. Miller, L. Van Waerbeke, M. L. Brown, J. Coupon, L. Fu, J. Harnois-Draps, M. J. Hudson, K. Kuijken, B. Rowe, T. Schrabback, E. Semboloni, S. Vafaei, and M. Velander, Mon. Not. R. Astron. Soc. 432, 2433 (2013), arXiv: 1303.1808.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11947022, 11975072, 11835009, 11875102, 11522540, and 11690021), the Liaoning Revitalization Talents Program (Grant No. XLYC1905011), the Fundamental Research Funds for the Central Universities (Grant No. N2005030), the National Program for Support of Top-Notch Young Professionals, the 2019 Annual Scientific Research Funding Project of the Education Department of Liaoning Province (Grant No. LJC201915), and the Doctoral Research Project of Shenyang Normal University (Grant No. BS201844).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., He, DZ., Li, HL. et al. Constraints on active and sterile neutrinos in an interacting dark energy cosmology. Sci. China Phys. Mech. Astron. 63, 290404 (2020). https://doi.org/10.1007/s11433-019-1511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1511-8

Navigation