Skip to main content
Log in

Implementation of Integrable Systems by Topological, Geodesic Billiards with Potential and Magnetic Field

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In the paper, eight classes of integrable billiards are studied; in particular, classes introduced by the authors: elementary, topological, billiard books, billiards on the Minkowski plane, geodesic billiards on quadrics in three-dimensional Euclidean space, billiards in a magnetic field, and also a class containing all of the ones above. It turns out that, in the class of billiard books, topological obstacles to implementation occurred, for example, for the “twisted” Lagrange top (as we conventionally call a modification of the usual Lagrange top which we had discovered) for one of energy zones. We indicate this obstacle explicitly. It turns out further that this system can still be implemented in the class of magnetic billiards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. V. Vedyushkina and A. T. Fomenko, “Billiards and Integrability in Geometry and Physics. New Scope and New Potential,” Vestn. Moskov. Univ. Ser. Matem. Mekh. (3), 15–25 (2019) [Moscow Univ. Math. Bull. 74 (3), 98–107 (2019)].

  2. V. V. Kozlov, “Some Integrable Generalizations of the Jacobi Problem on Geodesies on an Ellipsoid,” Prikl. Mat. Mekh. 59 (1), 3–9 (1995) [J. Appl. Math. Mech. 59 (1), 1–7 (1995)].

    MathSciNet  Google Scholar 

  3. G.D. Birkhoff, Dynamical Systems (AMS, 1927; Izd. Dom “Udmurt. Univ”. 1999.

  4. V. V. Kozlov and D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts (Izd. MGU, Moscow, 1991; AMS, Providence, RI, 1991).

    Book  MATH  Google Scholar 

  5. V. Dragović and M. Radnović, “Bifurcations of Liouville tori in elliptical billiards,” Regul. Chaotic Dyn. 14 (4–5), 479–494 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. V. Dragovic and M. Radnovic, Integrable Billiards, Quadrics, and Multidimensional Poncelet Porisms (NITs “Regul. Khaot. Din.”, Moscow-Izhevsk, 2010).

  7. V. V. Fokicheva, “Description of Singularities for System “Billiard in an Ellipse”,” Vestn. Moskov. Univ. Ser. 1 Mat. Mekh. (5), 31–34 (2012) [Moscow Univ. Math. Bull, 67 (5), 217–220 (2014)].

  8. V. V. Fokicheva, “Description of Singularities for Billiard Systems Bounded by Confocal Ellipses or Hyperbolas,” Vestn. Moskov. Univ. Ser. 1 Mat. Mekh. (4), 18–27 (2014) [Moscow Univ. Math. Bull. 69 (4), 148–158 (2014)].

  9. V. V. Fokicheva, “A Topological Classification of Billiards in Locally Planar Domains Bounded by Arcs of Confocal Quadrics”, Mat. Sb. 206 (10), 127–176 (2015) [Sb. Math. 206 (10), 1463–1507 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  10. V. V. Vedyushkina and A. T. Fomenko, “Integrable Topological Billiards and Equivalent Dynamical Systems,” Izv. RAN. Ser. Mat. 81 (4), 20–67 (2017) [Izv. Math. 81 (4), 688–733 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  11. V. V. Vedyushkina, “The Liouville Foliation of Nonconvex Topological Billiards,” Dokl. Ross. Akad. Nauk 478 (1), 7–11 (2018) [Dokl. Math. 97 (1), 1–5 (2018)].

    MathSciNet  MATH  Google Scholar 

  12. V. V. Vedyushkina, “The Fomenko-Zieschang Invariants of Nonconvex Topological Billiards,” Mat. Sb. 210 (3), 17–74 (2019) [Sb. Math. 210 (3), 310–363 (2019)].

    Article  MathSciNet  MATH  Google Scholar 

  13. V. V. Vedyushkina, A. T. Fomenko, and I. S. Kharcheva, “Modeling Nondegenerate Bifurcations of Closures of Solutions for Integrable Systems with Two Degrees of Freedom by Integrable Topological Billiards,” Dokl. Ross. Akad. Nauk 479 (6), 607–610 (2018) [Dokl. Math. 97 (2), 174–176 (2018)].

    MathSciNet  MATH  Google Scholar 

  14. V. V. Vedyushkina and I. S. Kharcheva, “Billiard Books Model All Three-Dimensional Bifurcations of Integrable Hamiltonian Systems,” Mat. Sb. 209 (12), 17–56 (2018) [Sb. Math. 209 (12), 1690–1727 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Dragović and M. Radnović, “Topological Invariants for Elliptical Billiards and Geodesics on Ellipsoids in the Minkowski Space,” Fundam. Prikl. Mat. 20 (2), 51–64 (2015) [J. Math. Sci. 223 (6), 686–694 (2017)].

    MATH  Google Scholar 

  16. A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification, Vols. 1, 2 (NITs “Regul. Khaot. Din”, Moscow-Izhevsk, 1999).

  17. A. T. Fomenko and H. Zieschang, “On Typical Topological Properties of Integrable Hamiltonian Systems,” Izv. AN SSSR Ser. Mat. 52 (2), 378–407 (1988) [Math. USSR-Izv. 32 (2), 385–412 (1989)].

    MATH  Google Scholar 

  18. A. T. Fomenko, “The Symplectic Topology of Completely Integrable Hamiltonian Systems,” Uspekhi Mat. Nauk 44 (1(265)), 145–173 (1989) [Russian Math. Surveys 44 (1), 181=−219 (1989)].

    MathSciNet  MATH  Google Scholar 

  19. A. T. Fomenko and H. Zieschang, “A Topological Invariant and a Criterion for the Equivalence of Integrable Hamiltonian Systems with Two Degrees of Freedom,” Izv. AN SSSR Ser. Matem. 54 (3), 546–575 (1990).

    MathSciNet  MATH  Google Scholar 

  20. A. T. Fomenko, “Morse Theory of Integrable Hamiltonian Systems,” Dokl. Akad. Nauk SSSR 287 (5), 1017–1075 (1986) [Sov. Math., Dokl. 33, 502–506 (1986)].

    MathSciNet  Google Scholar 

  21. V. V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics (Izd. Udmurt. Univ., Izhevsk, 1995; Springer-Verlag, Berlin, 1996).

    MATH  Google Scholar 

  22. E. O. Kantonistova, “Topological Classification of Integrable Hamiltonian Systems in a Potential Field on Surfaces of Revolution,” Mat. Sb. 207 (3), 47–92 (2016) [Sb. Math. 207 (3), 358–399 (2016)].

    Article  MathSciNet  MATH  Google Scholar 

  23. D. S. Timonina, “Liouville Classification of Integrable Geodesic Flows on a Torus of Revolution in a Potential Field,” Vestnik Moskov. Univ. Ser. 1. Mat. Mekh. (3), 35–43 (2017) [Moscow Univ. Math. Bull. 72 (3), 121–128 (2017)].

  24. D. S. Timonina, “Liouville Classification of Integrable Geodesic Flows in a Potential Field on Two-Dimensional Manifolds of Revolution: the Torus and the Klein Bottle,” Mat. Sb. 209 (11), 103–136 (2018) [Sb. Math. 209 (11), 1644–1676 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  25. V. V. Fokicheva and A. T. Fomenko. “Integrable Billiards Model Important Integrable Cases of Rigid Body Dynamics,” Dokl. Ross. Akad. Nauk 465 (2), 150–153 (2015) [Dokl. Math. 92 (3), 682–684 (2015)].

    MathSciNet  MATH  Google Scholar 

  26. M. Bialy and A. E. Mironov, “Polynomial Non-Integrability of Magnetic Billiards on the Sphere and the Hyperbolic Plane,” Uspekhi Mat. Nauk 74 (2(446)), 3–26 (2019) [Russian Math. Surveys, 74 (2), 187–209 (2019)].

    Article  MathSciNet  Google Scholar 

  27. M. A. Tuzhilin, “Invariants of Four- and Three-Dimensional Singularities of Integrable Systems,” Dokl. Ross. Akad. Nauk 467 (4), 385–388 (2016) [Dokl. Math. 93 (2), 186–189 (2016)].

    MathSciNet  MATH  Google Scholar 

  28. A. A. Oshemkov and M. A. Tuzhilin, “Integrable Perturbations of Saddle Singularities of Rank 0 of Integrable Hamiltonian Systems,” Mat. Sb. 209 (9), 102–127 (2018) [Sb. Math. 209 (9), 1351–1375 (2018)].

    Article  MathSciNet  MATH  Google Scholar 

  29. A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems. Geometry, Topology, Classification (Chapman&Hall/CRC. A CRC Press Company, Boca Raton, London, New York, Washington DC, 2004).

    Book  MATH  Google Scholar 

  30. V. V. Vedyushkina and A. T. Fomenko, “Integrable Geodesic Flows on Orientable Two-Dimensional Surfaces and Topological Billiards,” Izv. RAN. Ser. Mat..

Download references

Acknowledgment

The research was carried out as a part of the Program of the President of the Russian Federation for State Support of Leading Scientific Schools of the Russian Federation (grant NSh-6399.2018.1, agreement no. 075-02-2018-867) and was also supported by the Russian Foundation for Basic Research (grant 19-01-00775-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vedyushkina.

Additional information

To the memory of Mikhail Karasev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomenko, A.T., Vedyushkina, V.V. Implementation of Integrable Systems by Topological, Geodesic Billiards with Potential and Magnetic Field. Russ. J. Math. Phys. 26, 320–333 (2019). https://doi.org/10.1134/S1061920819030075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920819030075

Navigation