Skip to main content
Log in

JINR Participation in the Physics Program of the ATLAS Experiment in 2015–2019 Period

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The main purpose of the international ATLAS experiment—is the study of the proton-proton interactions at unprecedented energies of the LHC collider (from 7 to 14 TeV in center-of-mass system of colliding protons). In particular, the detailed probationof the Standard Model, its application limits, search for solutions of the key problems of the current stage of physics and astrophysics , such as origin of the elementary particles masses, nature of dark matter in the Universe, existence of extra dimensions and others are carried out with the ATLAS. Absolutely new and unique data will be obtained based on a multifaceted and comprehensive analyses of the proton-proton scattering processes. These data analyses will allow to answer several fundamental physical problems. Scientists from JINR successfullyparticipate in solving a number of such problems. This report briefly summarizes the main achievements of JINR team in physics analyses and participation in the computing system and GRID for the period of the 2015–2019. During this period it was published 28 papers with significant participation of the JINR staff, more than 20 talks at international conferences in addition to many reports of the working meeting within the Collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. G. Aad et al. (ATLAS Collab.), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [hep-ex].

    Article  ADS  Google Scholar 

  2. V. Bednyakov et al., Joint Institute for Nuclear Research in the ATLAS Experiment. 1992–2015 (JINR, Dubna, 2018), p. 280.

    Google Scholar 

  3. SANC Home Page. http://sanc.jinr.ru/papers.php.

  4. A. Arbuzov et al., “Update of the MCSANC Monte Carlo integrator, v. 1.20,” JETP Lett. 103, 131–136 (2016). arXiv:1509.03052.

  5. A. Arbuzov et al., “Computer system SANC: Its development and applications,” J. Phys. Conf. Ser. 762, 012062 (2016).

    Article  Google Scholar 

  6. M. Aaboud et al. (ATLAS Collab.), “Precision measurement and interpretation of inclusive W+, W and Z/γ* production cross sections with the ATLAS detector,” Eur. Phys. J. 77, 367 (2017). arXiv:1612.03016.

  7. M. Aaboud et al. (ATLAS Collab.), “Measurement of the Drell–Yan triple-differential cross section in pp collisions at \(\sqrt s \) = 8 TeV,” J. High Energy Phys. 12, 059 (2017). arXiv:1710.05167.

  8. S. Alioli et al., “Precision studies of observables in pp → Wlυl and pp → γ, Zl+l processes at the LHC,” Eur. Phys. J. C 77, 280 (2017). https://doi.org/10.1140/epjc/s10052-017-4832-7

    Article  ADS  Google Scholar 

  9. M. Aaboud et al. (ATLAS Collab.), “Measurement of the effective leptonic weak mixing angle using electron and muon pairs from Z-boson decay in the ATLAS experiment at \(\sqrt s \) = 8 TeV,” ATLAS-CONF-2018-037 (Jul. 2018). http://cds.cern.ch/record/2630340.

  10. G. Aad et al. (ATLAS Collab.), “Two-particle Bose-Einstein correlations in pp collisions at \(\sqrt s \) = 0.9 and 7 TeV measured with the ATLAS detector,” Eur. Phys. J. 75, 466 (2015). arXiv:1502.07947.

  11. G. Apad et al. (ATLAS Collab.), “Charged-particle distributions in \(\sqrt s \) = 13 TeV pp interactions measured with the ATLAS detector at the LHC,” Phys. Lett. B 758, 67–88 (2016). arXiv:1602.01633.

  12. S. Porteboeuf et al., “Producing hard processes regarding the complete event: The EPOS event generator,” in Proc. 45th Rencontres de Moriond on QCD and High Energy Interactions: La Thuile, Italy, March 13–20,2010 (Gioi Publ., 2010), pp. 135–140. arXiv:1006.2967 [hep-ph].

  13. S. Ostapchenko, “Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model,” Phys. Rev. D 83, 014018 (2011). arXiv: 1010.1869 [hep-ph].

    Article  ADS  Google Scholar 

  14. A. V. Lipatov et al., “Probing proton intrinsic charm in photon or Z boson production accompanied by heavy jets at the LHC,” Phys. Rev. D 94, 053011 (2016). arXiv:1606.04882.

  15. S. Brodsky et al., “The physics of heavy quark distributions in hadrons: Collider tests,” Progr. Part. Nucl. Phys. 93, 108–142 (2017). http://www.sciencedirect.com/science/article/pii/S0146641016300746.

    Article  ADS  Google Scholar 

  16. A. V. Lipatov et al., “Hard production of a Z boson plus heavy flavor jets at LHC and the intrinsic charm content of a proton,” Phys. Rev. D 97, 114019 (2018). arXiv:1802.05085.

  17. V. A. Bednyakov et al., “Constraints on the intrinsic charm content of the proton from recent ATLAS data,” Eur. Phys. J. C 79, 92 (2019). arXiv:1712.09096.

  18. B. Harris et al., “Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO,” Nucl. Phys. B 461, 181–196 (1996). http://www.sciencedirect.com/science/article/pii/0550321395006524.

    Article  ADS  Google Scholar 

  19. G. Bari et al., “The \(\Lambda _{b}^{0}\) beauty baryon production in proton-proton interactions at \(\sqrt s \) = 62 GeV: A second observation,” Il Nuovo Cimento A 104, (1965–1970) (1991);

  20. Il Nuovo Cimento A 104, 1787–1800 (1991).

  21. S. Barlag et al. (ACCMOR Collab.), Production of the Charmed Baryon \(\Lambda _{c}^{ + }\)in πCu and KCu Interactions at 230GeV (European Organization for Nuclear Research, 1990), CERN-EP/90-77.

  22. F. Garcia et al., “Hadronic production of Λc from 600 GeV/c π, Σ and p beams,” Phys. Lett. B 528, 49–57 (2002). http://www.sciencedirect.com/science/article/pii/S0370269301014848.

    Article  ADS  Google Scholar 

  23. J. Badier et al. (NA3 Collab.), “Experimental J/ψ hadronic production from 150 to 280 GeV/c,” Z. Phys. C Part. Fields 20, 101–116 (1983). https://doi.org/10.1007/BF01573213

    Article  Google Scholar 

  24. R. Vogt et al., “Systematics of J/ψ production in nuclear collisions,” Nucl. Phys. B 360, 67–96 (1991). http://www.sciencedirect.com/science/article/pii/ 055032139190435Z.

    Article  ADS  Google Scholar 

  25. S. J. Brodsky et al., “Resolving the SELEX-LHCb double-charm baryon conflict: The impact of intrinsic heavy-quark hadroproduction and supersymmetric light-front holographic QCD,” Eur. Phys. J. C 78, 483 (2018). arXiv:1709.09903.

  26. V. M. Abazov et al. (D0 Collab.), “Measurement of γ + b + X and γ + c + X production cross sections in \(p\bar {p}\) collisions at \(\sqrt s \) =1.96 TeV,” Phys. Rev. Lett. 102, 192002 (2009). https://doi.org/10.1103/PhysRevLett.102.192002

    Article  ADS  Google Scholar 

  27. V. Abazov et al. (D0 Collab.), “Measurement of the photon+b-jet production differential cross section in \(p\bar {p}\) collisions at \(\sqrt s \) =1.96 TeV,” Phys. Lett. B 714, 32–39 (2012). http://www.sciencedirect.com/science/article/pii/S0370269312006958.

    Article  ADS  Google Scholar 

  28. V. Abazov et al. (D0 Collab.), “Measurement of the differential γ + c-jet cross section and the ratio of differential γ + c and γ + b cross sections in \(p\bar {p}\) collisions at \(\sqrt s \) =1.96 TeV,” Phys. Lett. B 719, 354–361 (2013). http://www.sciencedirect.com/science/article/pii/ S0370269313000580.

    Article  ADS  Google Scholar 

  29. T. Aaltonen et al. (CDF Collab.), “Study of the associated production of photons and b-quark jets in \(p\bar {p}\) collisions at \(\sqrt s \) = 1:96 TeV,” Phys. Rev. D: Part. Fields 81, 052006 (2010). https://doi.org/10.1103/PhysRevD.81.052006

    Article  ADS  Google Scholar 

  30. T. Aaltonen et al. (CDF Collab.), “Measurement of the cross section for direct-photon production in association with a heavy quark in \(p\bar {p}\) collisions at \(\sqrt s \) = 1.96 TeV,” Phys. Rev. Lett. 111, 042003 (2013). https://doi.org/10.1103/PhysRevLett.111.042003

    Article  ADS  Google Scholar 

  31. A. A. Grinyuk et al., “Significance of nonperturbative input to the transverse momentum dependent gluon density for hard processes at the LHC,” Phys. Rev. D 93, 014035 (2016). arXiv:1510.07849

  32. G. I. Lykasov et al., “Self-consistent analysis of hadron production in pp and AA collisions at mid-rapidity,” Eur. Phys. J. A 54, 187 (2018). https://doi.org/10.1140/epja/i2018-12614-3

    Article  ADS  Google Scholar 

  33. N. A. Abdulov et al., “Employing RHIC and LHC data to determine the transverse momentum dependent gluon density in a proton,” Phys. Rev. D: Part. Fields 98, 054010 (2018). https://doi.org/10.1103/PhysRevD.98.054010

    Article  ADS  Google Scholar 

  34. M. Aaboud et al. (ATLAS Collab.), “Study of the rare decays of \(B_{s}^{0}\) and B0 into muon pairs from data collected during the LHC Run 1 with the ATLAS detector,” Eur. Phys. J. C 76, 513 (2016). https://doi.org/10.1140/epjc/s10052-016-4338-8

    Article  ADS  Google Scholar 

  35. M. Aaboud et al. (ATLAS Collab.), “Angular analysis of \(B_{d}^{0}\)K+μ decays in pp collisions at \(\sqrt s \) = 8 TeV with the ATLAS detector,” J. High Energy Phys. 2018, 47 (2018). https://doi.org/10.1007/JHEP10(2018)047

    Article  Google Scholar 

  36. M. Ciuchini et al., “BK*l+l decays at large recoil in the standard model: A theoretical reappraisal,” J. High Energy Phys. 2016, 116 (2016). https://doi.org/10.1007/JHEP06(2016)116

    Article  Google Scholar 

  37. S. Descotes-Genon et al., “On the impact of power corrections in the prediction of BK+μ observables,” J. High Energy Phys. 2014, 125 (2014). https://doi.org/10.1007/JHEP12(2014)125

    Article  ADS  Google Scholar 

  38. S. Jäger et al., “On BVll at small dilepton invariant mass, power corrections, and new physics,” J. High Energy Phys. 2013, 43 (2013). https://doi.org/10.1007/JHEP05(2013)043

    Article  Google Scholar 

  39. S. Jäger et al., “Reassessing the discovery potential of the BK*l+l decays in the large-recoil region: SM challenges and BSM opportunities,” Phys. Rev. D: Part. Fields 93, 014028 (2016). https://doi.org/10.1103/PhysRevD.93.014028

    Article  ADS  Google Scholar 

  40. R. Aaij et al. (LHCb Collab.), “Angular analysis of the B0K*0μ+μ decay using 3 fb–1 of integrated luminosity,” J. High Energy Phys. 2016, 104 (2016). https://doi.org/10.1007/JHEP02(2016)104

    Article  Google Scholar 

  41. V. Khachatryan et al. (CMS Collab.), “Angular analysis of the decay B0K*0μ+μ from pp collisions at \(\sqrt s \) = 8 TeV,” Phys. Lett. B 753, 424–448 (2016). http://www.sciencedirect.com/science/article/pii/S0370269315009685.

    Article  ADS  Google Scholar 

  42. J. T. Wei et al. (Belle Collab.), “Measurement of the differential branching fraction and forward-backward asymmetry for BK*l+l,” Phys. Rev. Lett. 103, 171801 (2009). https://doi.org/10.1103/PhysRevLett.103.171801

    Article  ADS  Google Scholar 

  43. J. P. Lees et al. (BABAR Collab.), “Measurement of angular asymmetries in the decays BK*l+l,” Phys. Rev. D: Part. Fields 93, 052015 (2016). https://doi.org/10.1103/PhysRevD.93.052015

    Article  ADS  Google Scholar 

  44. G. Aad et al. (ATLAS Collab.), “Study of the \(B_{c}^{ + } \to {J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }D_{s}^{ + }\) and \(B_{c}^{ + } \to {J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }D_{s}^{{* + }}\) decays with the ATLAS detector,” Eur. Phys. J. C 76, 4 (2016). https://doi.org/10.1140/epjc/s10052-015-3743-8

    Article  ADS  Google Scholar 

  45. R. Aaij et al. (LHCb Collab.), “Observation of \(B_{c}^{ + } \to {J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }D_{s}^{ + }\) and \(B_{c}^{ + } \to {J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }D_{s}^{{* + }}\) decays,” Phys. Rev. D: Part. Fields 87, 112012 (2013). https://doi.org/10.1103/PhysRevD.87.112012

    Article  ADS  Google Scholar 

  46. P. Colangelo et al., “Using heavy quark spin symmetry in semileptonic Bc decays,” Phys. Rev. D: Part. Fields 61, 034012 (2000). https://doi.org/10.1103/PhysRevD.61.034012

    Article  Google Scholar 

  47. V. V. Kiselev, Exclusive decays and lifetime of Bc meson in QCD sum rules (2002). arXiv:hep-ph/0211021.

  48. M. A. Ivanov et al., “Exclusive semileptonic and nonleptonic decays of the Bc meson,” Phys. Rev. D: Part. Fields 73, 054024 (2006). https://doi.org/10.1103/PhysRevD.73.054024

    Article  ADS  Google Scholar 

  49. R. Dhir et al., “Bc meson form factors and BcPV decays involving flavor dependence of transverse quark momentum,” Phys. Rev. D: Part. Fields 79, 034004 (2009).

    Article  Google Scholar 

  50. Hong-Wei Ke, Tan Liu, and Xue-Qian Li, “Transitions of Bc → ψ (1S; 2S) and the modified harmonic oscillator wave function in the light front quark model,” Phys. Rev. D: Part. Fields 89, 017501 (2014). https://doi.org/10.1103/PhysRevD.89.017501

    Article  Google Scholar 

  51. Z. Rui et al., “S-wave ground state charmonium decays of Bc mesons in the perturbative QCD approach,” Phys. Rev. D: Part. Fields 90, 114030 (2014). https://doi.org/10.1103/PhysRevD.90.114030

    Article  ADS  Google Scholar 

  52. S. Kar et al., “Nonleptonic BcVV decays,” Phys. Rev. D: Part. Fields 88, 094014 (2013). https://doi.org/10.1103/PhysRevD.88.094014

    Article  ADS  Google Scholar 

  53. G. Aad et al. (ATLAS Collab.), “Measurement of the \(\Lambda _{b}^{0}\) lifetime and mass in the ATLAS experiment,” Phys. Rev. D 87, 032002 (2013). arXiv:1207.2284 [hep-ex].

    Article  ADS  Google Scholar 

  54. G. Aad et al. (ATLAS Collab.), “Measurement of the parity-violating asymmetry parameter αb and the helicity amplitudes for the decay \(\Lambda _{b}^{0}\)J/ψ + Λ0 with the ATLAS detector,” Phys. Rev. D: Part. Fields 89, 092009 (2014). arXiv:1404.1071 [hep-ex].

    Article  ADS  Google Scholar 

  55. S. Chatrchyan et al. (CMS Collab.), “Measurement of the Λb cross section and the \({{\bar {\Lambda }}_{b}}\) to Λb ratio with J/ψΛ decays in pp collisions at \(\sqrt s \) = 7 TeV,” Phys. Lett. B 714, 136–157 (2012). arXiv:1205.0594 [hep-ex].

    Article  ADS  Google Scholar 

  56. S. Chatrchyan et al. (CMS Collab.), “Measurement of the \(\Lambda _{b}^{0}\) life-time in pp collisions at \(\sqrt s \) = 7 TeV,” J. Hihg Energy Phys. 07, 163 (2013). arXiv:1304.7495 [hep-ex].

    Article  ADS  Google Scholar 

  57. R. Aaij et al. (LHCb Collab.), “Measurement of the \(\Lambda _{b}^{0}\), \(\Xi _{b}^{ - }\) and \(\Omega _{b}^{ - }\) baryon masses,” Phys. Rev. Lett. 110, 182001 (2013). arXiv:1302.1072 [hep-ex].

    Article  ADS  Google Scholar 

  58. R. Aaij et al. (LHCb Collab.), “Precision measurement of the Λb baryon lifetime,” Phys. Rev. Lett. 111, 102003 (2013). arXiv:1307.2476 [hep-ex].

    Article  ADS  Google Scholar 

  59. R. Aaij et al. (LHCb Collab.), “Measurements of the \(\Lambda _{b}^{0} \to {J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) decay amplitudes and the \(\Lambda _{b}^{0}\) polarisation in pp collisions at \(\sqrt s \) = 7 TeV,” Phys. Lett. B. 724, 27–35 (2013). arXiv:1302.5578 [hep-ex].

    Article  ADS  Google Scholar 

  60. R. Aaij et al. (LHCb Collab.), “Measurement of the differential branching fraction of the decay \(\Lambda _{b}^{0} \to \Lambda {{\mu }^{ + }}{{\mu }^{ - }}\),” Phys. Lett. B 725, 25–35 (2013). arXiv: 1306.2577 [hep-ex].

    Article  ADS  Google Scholar 

  61. R. Aaij et al. (LHCb Collab.), “Differential branching fraction and angular analysis of \(\Lambda _{b}^{0} \to \Lambda {{\mu }^{ + }}{{\mu }^{ - }}\) decays,” J. High Energy Phys. 06, 115 (2015);

    Article  ADS  Google Scholar 

  62. Erratum: J. High Energy Phys. 09, 145 (2018); arXiv:1503.07138.

  63. T. Aaltonen et al. (CDF Collab.), “Observation of the baryonic flavor-changing neutral current decay \(\Lambda _{b}^{0}\) → Λμ+μ,” Phys. Rev. Lett. 107, 201802 (2011). arXiv:1107.3753 [hep-ex].

    Article  ADS  Google Scholar 

  64. M. A. Ivanov et al., “Electromagnetic form factors of nucleons in a relativistic three quark model,” Few Body Syst. 21, 131 (1996). arXiv:hep-ph/9602372.

    Article  ADS  Google Scholar 

  65. T. Gutsche et al., “Polarization effects in the cascade decay Λb → Λ(→ pπ) + J/ψ(→ l+l) in the covariant confined quark model,” Phys. Rev. D: Part. Fields 88, 114018 (2013). arXiv:1309.7879 [hep-ph].

    Article  ADS  Google Scholar 

  66. G. Aad et al. (ATLAS Collab.), “Measurement of the branching ratio \(\Gamma (\Lambda _{b}^{0}\)\(\psi (2S){{{{\Lambda }^{0}})} \mathord{\left/ {\vphantom {{{{\Lambda }^{0}})} {\Gamma (\Lambda _{b}^{0}}}} \right. \kern-0em} {\Gamma (\Lambda _{b}^{0}}}\)\({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }{{\Lambda }^{0}})\) with the ATLAS detector,” Phys. Lett. B 751, 63–80 (2015). arXiv:1507.08202.

  67. G. Aad et al. (ATLAS Collab.), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1–29 (2012). http://www.sciencedirect.com/science/article/pii/S037026931200857X.

    Article  ADS  Google Scholar 

  68. S. Chatrchyan et al. (CMS Collab.), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30–61 (2012). http://www.sciencedirect.com/science/article/pii/S0370269312008581.

    Article  ADS  Google Scholar 

  69. G. Aad et al. (ATLAS Collab.), “Search for the \(b\bar {b}\) decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector,” J. High Energy Phys. 2015, 69 (2015). https://doi.org/10.1007/JHEP01(2015)069

    Article  Google Scholar 

  70. M. Aaboud et al. (ATLAS Collab.), “Evidence for the H\(b\bar {b}\) decay with the ATLAS detector,” J. High Energy Phys. 2017, 24 (2017). https://doi.org/10.1007/JHEP12(2017)024

    Article  Google Scholar 

  71. M. Aaboud et al. (ATLAS Collab.), “Observation of H → \(b\bar {b}\) decays and VH production with the ATLAS detector,” Phys. Lett. B 786, 59–86 (2018). http://www.sciencedirect.com/science/article/pii/ S0370269318307056.

    Article  ADS  Google Scholar 

  72. M. Aaboud et al. (ATLAS Collab.), “Measurement of VH, H\(b\bar {b}\) production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector,” J. High Energy Phys. 2019, 141 (2019). https://doi.org/10.1007/JHEP05(2019)141

    Article  Google Scholar 

  73. G. Aad et al. (ATLAS and CMS Collab.), “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \(\sqrt s \) = 7 and 8 TeV,” J. High Energy Phys. 2016 (8), 45 (2016).

    Article  Google Scholar 

  74. S. Heinemeyer et al. (LHC Higgs Cross Section Working Group Collab.), Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group, Ed. by S. Heinemeyer (CERN, 2013). https://twiki.cern.ch/twiki/bin/view/ LHCPhysics/CrossSections; https://cds.cern.ch/record/1559921.

  75. LHC Higgs Cross Section Working Group. 2016. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ CERNYellowReportPageAt13TeV.

  76. Search for the Associated Production of a Higgs Boson and a Top Quark Pair in Multilepton Final States with the ATLAS Detector: Rep.: ATLAS-CONF-2016-058 (CERN, Geneva, 2016). http://cds.cern.ch/record/2206153.

  77. D. London et al., “Extra gauge bosons in E(6),” Phys. Rev. D 34, 1530 (1986).

    Article  ADS  Google Scholar 

  78. P. Langacker, “The physics of heavy Z' gauge bosons,” Rev. Mod. Phys. 81, 1199–1228 (2009). arXiv: 0801.1345 [hep-ph].

    Article  ADS  Google Scholar 

  79. E. Salvioni et al., “Minimal Z-prime models: Present bounds and early LHC reach,” J. High Energy Phys. 11, 068 (2009). arXiv:0909.1320 [hep-ph].

  80. L. Randall et al., “A large mass hierarchy from a small extra dimension,” Phys. Rev. Lett. 83, 3370–3373 (1999). arXiv:hep-ph/9905221.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. P. Meade et al., “Black holes and quantum gravity at the LHC,” J. High Energy Phys. 05, 003 (2008). arXiv: 0708.3017 [hep-ph].

  82. M. V. Chizhov et al., “Proposal for chiral bosons search at LHC via their unique new signature,” Phys. Atom. Nucl. 71, 2096–2100 (2008). arXiv:0801.4235 [hep-ph].

  83. F. Sannino et al., “Orientifold theory dynamics and symmetry breaking,” Phys. Rev. D 71, 051901 (2005). arXiv:hep-ph/0405209.

    Article  ADS  Google Scholar 

  84. G. Aad et al. (ATLAS Collab.), “Search for high-mass resonances decaying to dilepton final states in pp collisions at \(\sqrt s \) = 7 with the ATLAS detector,” J. High Energy Phys. 11, 138 (2012). arXiv:1209.2535 [hep-ex].

    Article  ADS  Google Scholar 

  85. M. Aaboud et al. (ATLAS Collab.), “Search for high-mass new phenomena in the dilepton final state using proton-proton collisions at \(\sqrt s \) = 13 TeV with the ATLAS detector,” Phys. Lett. B 761, 372–392 (2016). arXiv:1607.03669.

  86. M. Aaboud et al. (ATLAS Collab.), “Search for new high-mass phenomena in the dilepton final state using 36 fb–1 of proton-proton collision data at \(\sqrt s \) = 13 TeV with the ATLAS detector,” J. High Energy Phys. 2017 (10), 182 (2017).

    Article  ADS  Google Scholar 

  87. R. N. Mohapatra et al., “Left-right gauge symmetry and an “isoconjugate” model of CP violation,” Phys. Rev. D: Part. Fields 11, 566–571 (1975). https://doi.org/10.1103/PhysRevD.11.566

    Article  ADS  Google Scholar 

  88. G. Senjanovic et al., “Exact left-right symmetry and spontaneous violation of parity,” Phys. Rev. D: Part. Fields 12, 1502–1505 (1975). https://doi.org/10.1103/PhysRevD.12.1502

    Article  ADS  Google Scholar 

  89. N. Arkani-Hamed et al., “The littlest Higgs,” J. High Energy Phys. 2002 (07), 034 (2002).

  90. G. Altarelli et al., “Searching for new heavy vector bosons \(p\bar {p}\) colliders,” Z. Phys. C Part. Fields 45, 109–121 (1989). https://doi.org/10.1007/BF01556677

    Article  Google Scholar 

  91. M. Aaboud et al. (ATLAS Collab.), “Search for new resonances in events with one lepton and missing transverse momentum in pp collisions at \(\sqrt s \) = 13 TeV with the ATLAS detector,” Phys. Lett. B 762, 334–352 (2016). arXiv:1606.03977.

  92. M. Aaboud et al. (ATLAS Collab.), “Search for a new heavy gauge boson resonance decaying into a lepton and missing transverse momentum in 36 fb–1 of pp collisions at \(\sqrt s \) = 13 TeV with the ATLAS experiment,” Eur. Phys. J. 78, 401 (2018). arXiv:1706.04786.

  93. G. Aad et al. (ATLAS Collab.), “Search for high-mass states with one lepton plus missing transverse momentum in proton-proton collisions at \(\sqrt s \) = 7 TeV with the ATLAS detector,” Phys. Lett. B 701, 50–69 (2011). arXiv:1103.1391 [hep-ex].

    Article  ADS  Google Scholar 

  94. G. Aad et al. (ATLAS Collab.), “Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb–1 of pp collisions at \(\sqrt s \) = 7 TeV using the ATLAS detector,” Phys. Lett. B 705, 28–46 (2011). arXiv:1108.1316 [hep-ex].

    Article  ADS  Google Scholar 

  95. Aad G. et al. (ATLAS Collab.), “Search for new particles in events with one lepton and missing transverse momentum in pp collisions at \(\sqrt s \) = 8 TeV with the ATLAS detector,” J. High Energy Phys. 2014 (9), 37 (2014). https://doi.org/10.1007/JHEP09(2014)037

    Article  Google Scholar 

  96. M. Aaboud et al. (ATLAS Collab.), “Search for resonances in diphoton events at \(\sqrt s \) =13 TeV with the ATLAS detector,” J. High Energy Phys. 09, 001 (2016). arXiv:1606.03833.

  97. “Search for new physics in high mass diphoton events in proton-proton collisions at 13TeV,” CMS-PAS-EXO-15-004 (2015).

  98. M. Aaboud et al. (ATLAS Collab.), “Search for heavy resonances decaying to a Z boson and a photon in pp collisions at \(\sqrt s \) = 13 TeV with the ATLAS detector,” Phys. Lett. B 764, 11–30 (2017). arXiv:1607.06363.

  99. P. Artoisenet et al., “A framework for Higgs characterisation,” J. High Energy Phys. 2013 (11), 43 (2013). https://doi.org/10.1007/JHEP11(2013)043

    Article  Google Scholar 

  100. D. Pappadopulo et al., “Heavy vector triplets: Bridging theory and data,” J. High Energy Phys. 2014 (9), 60 (2014). https://doi.org/10.1007/JHEP09(2014)060

    Article  MathSciNet  MATH  Google Scholar 

  101. V. Bednyakov et al., “Lepton decay channels of Egret gluinos at the LHC,” Phys. Part. Nucl. Lett. 5, 520–530 (2008).

    Article  Google Scholar 

  102. V. A. Bednyakov et al., “On the LHC observation of gluinos from the Egret-preferred region,” Phys. Atomic Nucl. 72, 619–637 (2009).

    Article  ADS  Google Scholar 

  103. G. Aad et al. (ATLAS Collab.), “Search for supersymmetry at \(\sqrt s \) = 7 TeV in final states with large jet multiplicity, missing transverse momentum and one isolated lepton with the ATLAS detector,” ATLAS-CONF-2012-140 (2012).

  104. G. Aad et al. (ATLAS Collab.), “Summary of the searches for squarks and gluinos using \(\sqrt s \) = 8 TeV pp collisions with the ATLAS experiment at the LHC,” J. High Energy Phys. 10, 054 (2015). arXiv: 1507.05525.

  105. G. Aad et al. (ATLAS Collab.), “Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at \(\sqrt s \) = 13 TeV with the ATLAS detector,” Eur. Phys. J. C 76, 565 (2016). arXiv: 1605.04285.

  106. A. H. Chamseddine et al., “Locally supersymmetric grand unification,” Phys. Rev. Lett. 49, 970 (1982).

    Article  ADS  Google Scholar 

  107. R. Barbieri et al., “Gauge models with spontaneously broken local supersymmetry,” Phys. Lett. B 119, 343 (1982).

    Article  ADS  Google Scholar 

  108. L. E. Ibanez, “Locally supersymmetric SU(5) grand unification,” Phys. Lett. B 118, 73–78 (1982).

    Article  ADS  Google Scholar 

  109. L. J. Hall et al., “Supergravity as the messenger of supersymmetry breaking,” Phys. Rev. D 27, 2359–2378 (1983).

    Article  ADS  Google Scholar 

  110. N. Ohta, “Grand unified theories based on local supersymmetry,” Prog. Theor. Phys. 70, 542 (1983).

    Article  ADS  Google Scholar 

  111. G. L. Kane et al., “Study of constrained minimal supersymmetry,” Phys. Rev. D 49, 6173–6210 (1994). arXiv:hep-ph/9312272.

    Article  ADS  Google Scholar 

  112. M. W. Cahill-Rowley et al., “The new look pMSSM with neutralino and gravitino LSPs,” Eur. Phys. J. C 72, 2156 (2012). arXiv:1206.4321 [hep-ph].

    Article  ADS  Google Scholar 

  113. J. Alwall et al., “Searching for directly decaying gluinos at the tevatron,” Phys. Lett. B 666, 34–37 (2008). arXiv:0803.0019 [hep-ph].

    Article  ADS  Google Scholar 

  114. J. Alwall et al., “Simplifled models for a first characterization of new physics at the LHC,” Phys. Rev. D 79, 075020 (2009). arXiv:0810.3921 [hep-ph].

    Article  ADS  Google Scholar 

  115. D. Alves et al. (LHC New Physics Working Group Collab.), “Simplified models for LHC new physics searches,” J. Phys. G 39, 105005 (2012). arXiv: 1105.2838 [hep-ph].

    Article  ADS  Google Scholar 

  116. D. Barberis et al., “The ATLAS EventIndex and its evolution based on Apache Kudu storage,” CEUR Workshop Proc. 2267, 18–25 (2018). http://ceur-ws.org/Vol-2267/18-25-paper-3.pdf.

    Google Scholar 

  117. E. Alexandrov et al., “BigData tools for the monitoring of the ATLAS EventIndex,” CEUR Workshop Proc. 2267, 91–94 (2018). http://ceur-ws.org/Vol-2267/91-94-paper-15.pdf.

    Google Scholar 

  118. M. Mineev et al., “Trigger information data flow for the ATLAS EventIndex,” CEUR Workshop Proc. 2267, 104–107 (2018). http://ceur-ws.org/Vol-2267/104-107-paper-18.pdf.

    Google Scholar 

  119. I. Aleksandrov et al., “The resource manager the ATLAS trigger and data acquisition system,” J. Phys. Conf. Ser. 898, 032016 (2017).

    Article  Google Scholar 

  120. A. Kazarov et al., “Experience with SPLUNK for archiving and visualisation of operational data in ATLAS TDAQ system,” J. Phys. Conf. Ser. 1085, 032052 (2018).

    Article  Google Scholar 

Download references

7. ACKNOWLEDGMENTS

Authors acknowledge all members of the ATLAS Team at the JINR who contributed to the results summarized in this paper: Ahmadov F., Alexandrov E., Aleksandrov I., Arbuzov A., Bondarenko S., Boyko I., Cheplakov A., Chizhov M., Gladilin L., Gladyshev A., Huseinov N., Iakovlev A., Kalinovskaja L., Karpov S., Karpova Z., Kazakov D., Kazymov A., Koval O., Kultchitsky Y., Lykasov G., Lyubushkin V., Lyubushkina T., Mineev M., Plontikova E., Prokoshin F., Rusakovich N., Sadykov R., Sapronov A., Soloshenko A., Tsiareshka P., Turchikhin S., Yeletskikh I.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Bednyakov or E. V. Khramov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednyakov, V.A., Khramov, E.V. JINR Participation in the Physics Program of the ATLAS Experiment in 2015–2019 Period. Phys. Part. Nuclei 51, 123–140 (2020). https://doi.org/10.1134/S1063779620020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620020033

Navigation