Skip to main content
Log in

Femtoscopic Structure of Relativistic Heavy Ion Collisions in the Integrated HydroKinetic Model

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The theoretical description of the femtoscopy scales in ultrarelativistic heavy-ion collisions at different energies and for different colliding ion pairs (Au + Au collisions at the top RHIC energy \(\sqrt {{{s}_{{NN}}}} = 200\) GeV, Pb + Pb collisions at the LHC energies \(\sqrt {{{s}_{{NN}}}} = 2.76\) and \(\sqrt {{{s}_{{NN}}}} = 5.02\) TeV, the LHC Xe + Xe collisions at \(\sqrt {{{s}_{{NN}}}} = 5.44\) TeV) is provided within the integrated HydroKinetic model (iHKM). The comparison of the model simulation results, obtained for the considered collision types at the similar values of the mean charged particle multiplicity \(\left\langle {d{{N}_{{{\text{ch}}}}}{\text{/}}d\eta } \right\rangle \) shows that the magnitudes of the corresponding interferometry radii depend not only on \(\left\langle {d{{N}_{{{\text{ch}}}}}{\text{/}}d\eta } \right\rangle \), but also on the geometric sizes of the colliding nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. Goldhaber, S. Goldhaber, W. Lee, and A. Pais, Phys. Rev. 120, 325 (1960).

    Article  Google Scholar 

  2. G. I. Kopylov and M. I. Podgoretsky, Sov. J. Nucl. Phys. A 15, 219 (1972); 18, 336 (1973); 19, 215 (1974).

  3. G. Cocconi, Phys. Lett. B 49, 459 (1974).

    Article  ADS  Google Scholar 

  4. S. Pratt, Phys. Rev. D 33, 1314 (1986).

    Article  ADS  Google Scholar 

  5. A. N. Makhlin and Yu. M. Sinyukov, Sov. J. Nucl. Phys. A 46, 345 (1987);

    Google Scholar 

  6. A. N. Makhlin, and Yu. M. Sinyukov, Z. Phys. C: Solid State Phys. 39, 69 (1988);

    Article  Google Scholar 

  7. Yu. M. Sinyukov, Nucl. Phys. A 498, 151 (1989).

    Article  ADS  Google Scholar 

  8. Y. Hama and S. S. Padula, Phys. Rev. D 37, 3237 (1988).

    Article  ADS  Google Scholar 

  9. Yu. M. Sinyukov, Nucl. Phys. A 566, 589 (1994);

    Article  ADS  Google Scholar 

  10. Yu. M. Sinyukov, in Hot Hadronic Matter: Theory and Experiment, Ed. by J. Letessier, H. H. Gutbrod, and J. Rafelski (Plenum, New York, 1995), p. 309.

    Google Scholar 

  11. Yu. M. Akkelin and Yu. M. Sinyukov, Phys. Lett. B 356, 525 (1995).

    Article  ADS  Google Scholar 

  12. Yu. M. Sinyukov, R. Lednický, S. V. Akkelin, J. Pluta, and B. Erazmus, Phys. Lett. B 432, 248 (1998).

    Article  ADS  Google Scholar 

  13. R. Lednický and V. L. Lyuboshitz, Sov. J. Nucl. Phys. 35, 770 (1982); in Proc. Int. Workshop on Particle Correlations and Interferometry in Nuclear Collisions (CORINNE 90), Nantes, France, 1990, Ed. by D. Ardouin (World Sci., Singapore, 1990), p. 42; R. Lednicky, J. Phys. G: Nucl. Part. Phys. 35, 125 109 (2008).

  14. L. Nemenov, Yad. Fiz. 41, 980 (1985);

    Google Scholar 

  15. V. L. Lyuboshitz, Sov. J. Nucl. Phys. 48, 956 (1988).

    Google Scholar 

  16. D. A. Brown and P. Danielewicz, Phys. Lett. B 398, 252 (1997).

    Article  ADS  Google Scholar 

  17. D. A. Brown and P. Danielewicz, Phys. Rev. C 57, 2474 (1998).

    Article  ADS  Google Scholar 

  18. D. A. Brown and P. Danielewicz, Phys. Rev. C 64, 014 902 (2001).

    Article  Google Scholar 

  19. S. Afanasiev et al. (PHENIX Collab.), Phys. Rev. Lett. 100, 232 301 (2008).

    Article  Google Scholar 

  20. V. Yu. Naboka, Iu. A. Karpenko, and Yu. M. Sinyukov, Phys. Rev. C 93, 024902 (2016);

    Article  ADS  Google Scholar 

  21. V. Yu. Naboka, S. V. Akkelin, Iu. A. Karpenko, and Yu. M. Sinyukov, Phys. Rev. C 91, 014 906 (2015).

    Article  Google Scholar 

  22. M. D. Adzhymambetov, V. M. Shapoval, and Yu. M. Sinyukov, Nucl. Phys. A 987, 321 (2019).

    Article  ADS  Google Scholar 

  23. V. Yu. Naboka, Iu. A. Karpenko, and Yu. M. Sinyukov, Phys. Rev. C 93, 024 902 (2016).

    Article  Google Scholar 

  24. V. M. Shapoval and Yu. M. Sinyukov, Phys. Rev. C 100, 044905 (2019); arXiv:1809.07400 [hep-ph].

  25. S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998);

    Article  ADS  Google Scholar 

  26. M. Bleicher et al., J. Phys. G 25, 1859 (1999).

    Article  ADS  Google Scholar 

  27. W. Broniowski, M. Rybczynski, and P. Bozek, Comput. Phys. Commun. 180, 69 (2009).

    Article  ADS  Google Scholar 

  28. M. Laine and Y. Schroeder, Phys. Rev. D 73, 085009 (2006).

    Article  ADS  Google Scholar 

  29. A. Bazarov et al. (HotQCD Collab.), Phys. Rev. D 90, 094 503 (2014).

    Article  Google Scholar 

  30. M. Lisa, S. Pratt, R. Soltz, and U. Wiedemann. Ann. Rev. Nucl. Part. Sci. 55, 357 (2005);

    Article  ADS  Google Scholar 

  31. M. Lisa, Braz. J. Phys. 37, 963 (2007).

    Article  ADS  Google Scholar 

  32. S. V. Akkelin and Yu. M. Sinyukov, Phys. Rev. C 70, 064 901 (2004);

    Article  Google Scholar 

  33. S. V. Akkelin and Yu. M. Sinyukov, Phys. Rev. C 73, 034 908 (2006).

    Article  Google Scholar 

  34. V. M. Shapoval, P. Braun-Munzinger, Iu. A. Karpenko, and Yu. M. Sinyukov, Phys. Lett. B 725, 139 (2013).

    Article  ADS  Google Scholar 

  35. K. Aamodt et al. (ALICE Collab.), Phys. Rev. D 84, 112 004 (2011).

    Article  Google Scholar 

  36. K. Aamodt et al. (ALICE Collab.). Phys. Lett. B 696, 328 (2011).

    Article  Google Scholar 

  37. D. Antonczyk, Acta Phys. Polon. B 40, 1137 (2009).

    ADS  Google Scholar 

  38. S. V. Afanasiev et al. (NA49 Collab.), Phys. Rev. C 66, 054 902 (2002).

    Article  Google Scholar 

  39. C. Alt et al. (NA49 Collab.), Phys. Rev. C 77, 064 908 (2008).

    Article  Google Scholar 

  40. J. Adams et al. (STAR Collab.), Phys. Rev. Lett. 92, 112 301 (2004).

    Article  Google Scholar 

  41. J. Adams et al. (STAR Collab.), Phys. Rev. C 71, 044 906 (2004).

    Article  Google Scholar 

  42. S. S. Adler et al. (PHENIX Collab.), Phys. Rev. C 69, 034 909 (2004).

    Article  Google Scholar 

  43. S. S. Adler et al. (PHENIX Collab.), Phys. Rev. Lett. 93, 152 302 (2004).

    Article  Google Scholar 

Download references

Funding

The research was carried out within the scope of the International Research Network “EUREA: European Ultra Relativistic Energies Agreement” and the corresponding Agreement with the National Academy of Sciences (NAS) of Ukraine. The work is partially supported by Tomsk State University Competitiveness Improvement Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. M. Sinyukov, M. D. Adzhymambetov, V. M. Shapoval or V. Yu. Naboka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinyukov, Y.M., Adzhymambetov, M.D., Shapoval, V.M. et al. Femtoscopic Structure of Relativistic Heavy Ion Collisions in the Integrated HydroKinetic Model. Phys. Part. Nuclei 51, 258–262 (2020). https://doi.org/10.1134/S1063779620030260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620030260

Navigation