Skip to main content
Log in

4–4′ Diaponeurosporenic Acid, the C30 Carotenoid Pigment in Endophytic Pseudomonas Mendocina with Squalene Cyclase Activity

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Even though organisms with squalene hopene cyclase activity involved in hopanoid synthesis has been reported earlier, their existence along with carotenoid synthesis is rarely reported. Here, we report the existence of hopanoid and C30 carotenoid biosynthetic pathway in Pseudomonas mendocina, the squalene hopene cyclase producing endophyte of the medicinal plant Murraya koenigii. The enzyme squalene hopene cyclase from Pseudomonas mendocina is involved in the synthesis of dehydrosqualene-mediated alternate pathway for carotenoid biosynthesis. The hopanoids are involved in membrane stability and integrity, and the carotene chromophores are involved in the photo protection of the cell. The orange-colored C30 carotenoid pigment 4–4′ diaponeurosporenic acid in the extracellular extract of Pseudomonas mendocina with squalene cyclase activity was detected by the combination of UV/Vis spectrometry, FTIR, and Mass Spectrometry. 4–4′ diaponeurosporenic acid could be traced as the end product of the carotenoid pathway and belonged to the xanthophyll group of carotenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Taylor R (1984) Bacterial triterpenoids. Microbiol Mol Biol Rev 48:181–198

    CAS  Google Scholar 

  2. Suzue G, Tsukada K, Nakai C, Tanaka S (1968) Presence of squalene in Staphylococcus. Arch Biochem Biophys 123:644

    Article  CAS  Google Scholar 

  3. Kleinig H, Schmitt R, Meister W, Englert G, Thommen H et al (1979) New C30-carotenoic acid glucosyl esters from Pseudomonas rhodos. Z Naturforsch. https://doi.org/10.1515/znc-1979-3-404

    Article  Google Scholar 

  4. Tao L, Schenzle A, Odom J (2005) Novel carotenoid oxidase involved in biosynthesis of 4, 4′-diapolycopene dialdehyde. Appl Environ Microbiol 71:3294–3301. https://doi.org/10.1128/AEM.71.6.3294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Steiger S, Perez-Fons L, Fraser PD et al (2012) Biosynthesis of a novel C 30 carotenoid in Bacillus firmus isolates. J Appl Microbiol 113:888–895. https://doi.org/10.1111/j.1365-2672.2012.05377.x

    Article  PubMed  CAS  Google Scholar 

  6. Mohammadi M, Burbank L, Roper MC (2012) biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii. Appl Environ Microbiol 78:6859–6865. https://doi.org/10.1128/AEM.01574-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pelz A, Wieland KP, Putzbach K et al (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280:32493–32498. https://doi.org/10.1074/jbc.M505070200

    Article  PubMed  CAS  Google Scholar 

  8. Ochs D, Kaletta C, Entian KD et al (1992) Cloning, expression, and sequencing of squalene-hopene cyclase, a key enzyme in triterpenoid metabolism. J Bacteriol 174:298–302. https://doi.org/10.1128/jb.174.1.298-302.1992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ochs D, Tappe CH, Gärtner P et al (1990) Properties of purified squalene-hopene cyclase from Bacillus acidocaldarius. Eur J Biochem 194:75–80. https://doi.org/10.1111/j.1432-1033.1990.tb19429.x

    Article  PubMed  CAS  Google Scholar 

  10. Kleemann G, Kellner R, Poralla K (1994) Purification and properties of the squalene-hopene cyclase from Rhodopseudomonas palustris, a purple non-sulfur bacterium producing hopanoids and tetrahymanol. Biochim Biophys Acta (BBA)/Lipids Lipid Metab 1210:317–320. https://doi.org/10.1016/0005-2760(94)90235-6

    Article  CAS  Google Scholar 

  11. Perzl M, Müller P, Poralla K, Kannenberg EL (1997) Squalene-hopene cyclase from Bradyrhizobium japonicum : cloning, expression, sequence analysis and comparison to other triterpenoid cyclases. Microbiology 143:1235–1242. https://doi.org/10.1099/00221287-143-4-1235

    Article  PubMed  CAS  Google Scholar 

  12. Tippelt A, Jahnke L, Poralla K (1998) Squalene-hopene cyclase from Methylococcus capsulatus (Bath): a bacterium producing hopanoids and steroids. Biochim Biophys Acta 1391:223–232. https://doi.org/10.1016/s0005-2760(97)00212-9

    Article  PubMed  CAS  Google Scholar 

  13. Ghimire GP, Oh T-J, Lee HC, Sohng JK (2009) Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol Lett 31:565–569. https://doi.org/10.1007/s10529-008-9903-2

    Article  PubMed  CAS  Google Scholar 

  14. Pacifico D, Squartini A, Crucitti D et al (2019) The role of the endophytic microbiome in the grapevine response to environmental triggers. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.01256

    Article  Google Scholar 

  15. Fidan O, Zhan J (2019) Discovery and engineering of an endophytic Pseudomonas strain from Taxus chinensis for efficient production of zeaxanthin diglucoside. J Biol Eng 13:1–18. https://doi.org/10.1186/s13036-019-0196-x

    Article  CAS  Google Scholar 

  16. Nair MI, Jayachandran K (2017) A novel strain of Pantoea eucrina endophyte of Murraya koenigii with squalene cyclase activity. LIFE Int J Heal Life Sci 3:161–177. https://doi.org/10.20319/lijhls.2017.32.161177

    Article  Google Scholar 

  17. Nair IM, Kochupurakal J (2019) In silico characterization and over-expression of squalene hopene cyclase from Pseudomonas mendocina. 3 Biotech 9:1–7. https://doi.org/10.1007/s13205-019-1901-7

    Article  Google Scholar 

  18. Venil CK, Zakaria ZA, Usha R, Ahmad WA (2014) Isolation and characterization of flexirubin type pigment from Chryseobacterium sp. UTM-3T. Biocatal Agric Biotechnol 3:103–107. https://doi.org/10.1016/j.bcab.2014.02.006

    Article  Google Scholar 

  19. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645. https://doi.org/10.1007/s00253-010-2550-2

    Article  PubMed  CAS  Google Scholar 

  20. Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of Hopanoid triterpenes in Prokaryotes. Microbiology 130:1137–1150. https://doi.org/10.1099/00221287-130-5-1137

    Article  CAS  Google Scholar 

  21. Ku B, Jeong JC, Mijts BN et al (2005) Preparation, characterization, and optimization of an in vitro C30 carotenoid pathway. Appl Env Microbiol 71:6578–6583. https://doi.org/10.1128/AEM.71.11.6578-6583.2005

    Article  CAS  Google Scholar 

  22. Wieland B, Feil C, Gloria-Maercker E et al (1994) Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4’-diaponeurosporene of Staphylococcus aureus. J Bacteriol 176:7719–7726. https://doi.org/10.1128/jb.176.24.7719-7726.1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kim SH, Kim MS, Lee BY, Lee PC (2016) Generation of structurally novel short carotenoids and study of their biological activity. Sci Rep. https://doi.org/10.1038/srep21987

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The current study was supported by KSCSTE-SARD Programme, Kerala State Council for Science, Technology and Environment, DBT-MSUB Common Instrumentation Facility, School of Biosciences, and LC-MS/MS facility at Inter University Instrumentation Facility, School of Environmental Sciences, Mahatma Gandhi University Kottayam.

Author information

Authors and Affiliations

Authors

Contributions

The author IMN has contributed to the execution of the work and the preparation of the manuscript. The corresponding author JK contributed to the planning of the work and correction of the manuscript.

Corresponding author

Correspondence to K. Jayachandran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file1 (DOCX 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, I.M., Jayachandran, K. 4–4′ Diaponeurosporenic Acid, the C30 Carotenoid Pigment in Endophytic Pseudomonas Mendocina with Squalene Cyclase Activity. Curr Microbiol 77, 3473–3479 (2020). https://doi.org/10.1007/s00284-020-02180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02180-3

Navigation