Skip to main content
Log in

Fast and reversible adsorption for dibenzothiophene in fuel oils with metallic nano-copper supported on mesoporous silica

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Dibenzothiophene (DBT) in fuel oils causes the release of toxic sulfur oxide gases, and it is necessary to remove DBT in fuels. Herein, metallic copper was loaded on SBA-15 mesoporous silica through simple reduction reactions for the preparation of DBT adsorbents. On an adsorbent with a copper loading of 0.3 wt%, adsorption equilibrium was achieved within 5 min, and a DBT removal rate of 90.4% was achieved. The adsorption isotherm agreed with a linear Freundlich model and adsorption capacity was 12.1 mg sulfur/g. Nano-sized copper particles were observed by TEM, indicating the size effect of copper particles in DBT adsorption. A broad band, corresponding to copper-sulfur coordination bonds, was observed at 300–600 cm−1 in the Raman spectrum of DBT-doped adsorbent. Meanwhile, the band at 1233 cm−1 corresponding to C = C (–S) bonds in DBT was shifted to 1229 cm−1 in DBT adsorbed. XPS and Cu LMM XPS spectra proved that Cu(0) was oxidized by DBT sulfur during adsorption. Furthermore, Auger spectra verified that the adsorption of DBT on Cu(0) involved the formation of Cu(I) and Cu(II) species through coordination bonds. The adsorption capacity could be completely recovered via elution. This work sheds light on the removal of DBT in fuel oils with cost-effective efficient adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Alonso L, Arce A, Francisco M, Rodríguez O, Soto A (2010) Gasoline desulfurization using extraction with [C8mim][BF4] ionic liquid. AICHE J 53:3108–3115

    Article  CAS  Google Scholar 

  • Anema JR, Brolo AG, Felten A, Bittencourt C (2010) Surface-enhanced Raman scattering from polystyrene on gold clusters. J Raman Spectrosc 41:745–751

    Article  CAS  Google Scholar 

  • Asumana C, Yu G, Li X, Zhao J, Liu G, Chen X (2010) Extractive desulfurization of fuel oils with low-viscosity dicyanamide-based ionic liquids. Green Chem 12:2030–2037

    Article  CAS  Google Scholar 

  • Augustine AJ, Mads Emil K, Ritimukta S, Satoshi F, Liboiron BD, Stoj CS, Kosman DJ, Hodgson KO, Britt H, Solomon EI (2008) Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites. Biochemistry 47:2036–2045

    Article  CAS  Google Scholar 

  • Ayar N, Bilgin B, Atun G (2008) Kinetics and equilibrium studies of the herbicide 2,4-dichlorophenoxyacetic acid adsorption on bituminous shale. Chem Eng J 138:239–248

    Article  CAS  Google Scholar 

  • Bazyari A, Khodadadi AA, Mamaghani AH, Beheshtian J, Thompson LT, Mortazavi Y (2016) Microporous titania–silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization. Appl Catal, B 180:65–77

    Article  CAS  Google Scholar 

  • Bhandari VM, Chang HK, Park JG, Han SS, Cho SH, Kim JN (2006) Desulfurization of diesel using ion-exchanged zeolites. Chem Eng Sci 61:2599–2608

    Article  CAS  Google Scholar 

  • Capel-Sanchez MC, Perez-Presas P, Campos-Martin JM, Fierro JLG (2010) Highly efficient deep desulfurization of fuels by chemical oxidation. Catal Today 157:390–396

    Article  CAS  Google Scholar 

  • Chica A, Corma A, Dómine ME (2006) Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. J Catal 242:299–308

    Article  CAS  Google Scholar 

  • Choudhury AJ, Barve SA, Chutia J, Pal AR, Chowdhury D, Kishore R, Jagannath MN, Pandey M, Patil DS (2011) Investigations of the hydrophobic and scratch resistance behavior of polystyrene films deposited on bell metal using RF-PACVD process. Appl Surf Sci 257:4211–4218

    Article  CAS  Google Scholar 

  • Cychosz KA, Wongfoy AG, Matzger AJ (2009) Enabling cleaner fuels: desulfurization by adsorption to microporous coordination polymers. J Am Chem Soc 131:14538–14543

    Article  CAS  Google Scholar 

  • Figueiredo V, Elangovan E, Gonçalves G, Barquinha P, Pereira L, Franco N, Alves E, Martins R, Fortunato E (2008) Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl Surf Sci 254:3949–3954

    Article  CAS  Google Scholar 

  • Gao H, Guo C, Xing J, Zhao J, Liu H (2010) Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brønsted acidic ionic liquid at room temperature. Green Chem 12:1220–1224

    Article  CAS  Google Scholar 

  • Ghahramaninezhad M, Ahmadpour A (2020) A new simple protocol for the synthesis of nanohybrid catalyst for oxidative desulfurization of dibenzothiophene. Environ Sci Pollut Res 27:4104–4114

    Article  CAS  Google Scholar 

  • González SR, Yutaka I, Yoshio A, Navarrete JTL, Juan C (2011) The frontiers of quinoidal stability in long oligothiophenes: Raman spectra of dicationic polaron pairs. J Am Chem Soc 133:16350–16353

    Article  CAS  Google Scholar 

  • Guo X, Bao L, Chang L, Bao W, Liao J (2019) Influence of modifications on the deep desulfurization behavior of NaY and Na13X zeolites in gasoline. Environ Sci Pollut Res 26:13138–13146

    Article  CAS  Google Scholar 

  • Hansmeier AR, Meindersma GW, Haan ABD (2011) Desulfurization and denitrogenation of gasoline and diesel fuels by means of ionic liquids. Green Chem 13:1907–1913

    Article  CAS  Google Scholar 

  • Heidari A, Younesi H, Mehraban Z (2009) Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem Eng J 153:70–79

    Article  CAS  Google Scholar 

  • Hermet P, Izard N, Rahmani A, Ph G (2006) Raman scattering in crystalline oligothiophenes: a comparison between density functional theory and bond polarizability model. J Phys Chem B 110:24869–24875

    Article  CAS  Google Scholar 

  • Hernández-Maldonado AJ, Yang RT (2004) Desulfurization of diesel fuels by adsorption via π-complexation with vapor-phase exchanged Cu(I)−Y zeolites. J Am Chem Soc 126:992–993

    Article  CAS  Google Scholar 

  • Hu Y, He Q, Zhang Z, Ding N, Hu B (2011) Oxidative desulfurization of dibenzothiophene with hydrogen peroxide catalyzed by selenium(IV)-containing peroxotungstate. Chem Commun 47:12194–12196

    Article  CAS  Google Scholar 

  • Huo Z, Jin F, Yao G, Enomoto H, Kishita A (2015) An in situ Raman spectroscopic study of benzothiophene and its desulfurization under alkaline hydrothermal conditions. Ind Eng Chem Res 54:1397–1406

    Article  CAS  Google Scholar 

  • Lee JA, RöSner H, Corrigan JF, Huang Y (2011) Phase transitions of naphthalene and its derivatives confined in mesoporous silicas. J Phys Chem C 115:4738–4748

    Article  CAS  Google Scholar 

  • Li F, Liu R, Wen J, Zhao D, Sun Z, Liu Y (2009a) Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid. Green Chem 11:883–888

    Article  CAS  Google Scholar 

  • Li H, Zhu W, Wang Y, Zhang J, Lu J, Yan Y (2009b) Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride. Green Chem 11:810–815

    Article  CAS  Google Scholar 

  • Lipika B, Ritimukta S, Serena DBG, Brad E, Hooper AB, Britt H, Hodgson KO, Solomon EI (2005) Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure. J Am Chem Soc 127:3531–3544

    Article  CAS  Google Scholar 

  • Liu S, Wang B, Cui B, Sun L (2008) Deep desulfurization of diesel oil oxidized by Fe (VI) systems. Fuel 87:422–428

    Article  CAS  Google Scholar 

  • Lü H, Gao J, Jiang Z, Yang Y, Song B, Li C (2007) Oxidative desulfurization of dibenzothiophene with molecular oxygen using emulsion catalysis. Chem Commun 2:150–152

    Article  Google Scholar 

  • Lü H, Ren W, Liao W, Chen W, Li Y, Suo Z (2013) Aerobic oxidative desulfurization of model diesel using a B-type Anderson catalyst [(C18H37)2N(CH3)2]3Co(OH)6Mo6O18 · 3H2O. Appl Catal, B 138–139:79–83

    Article  CAS  Google Scholar 

  • Ma X, Velu S, Kim JH, Song C (2005) Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Appl Catal, B 56:137–147

    Article  CAS  Google Scholar 

  • Matloob AM, El-Hafiz DRA, Saad L, Mikhail S, Guirguis D (2019) Metal organic framework-graphene nano-composites for high adsorption removal of DBT as hazard material in liquid fuel. J Hazard Mater 373:447–458

    Article  CAS  Google Scholar 

  • Murata S, Murata K, Koh K, Nomura M (2004) A novel oxidative desulfurization system for diesel fuels with molecular oxygen in the presence of cobalt catalysts and aldehydes. Energy Fuel 18:116–121

    Article  CAS  Google Scholar 

  • Narasimharao K, Brown DR, Lee AF, Newman AD, Siril PF, Tavener SJ, Wilson K (2007) Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. J Catal 248:226–234

    Article  CAS  Google Scholar 

  • Peng L, Hensen EJM (2013) Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J Am Chem Soc 135:14032–14035

    Article  CAS  Google Scholar 

  • Platzman I, Brener R, Haick H, Tannenbaum R (2008) Oxidation of polycrystalline copper thin films at ambient conditions. J Phys Chem C 112:1101–1108

    Article  CAS  Google Scholar 

  • Qin JX, Tan P, Jiang Y, Liu XQ, He QX, Sun LB (2016) Functionalization of metal-organic frameworks with cuprous sites using vapor-induced selective reduction: efficient adsorbents for deep desulfurization. Green Chem 18:3210–3215

    Article  CAS  Google Scholar 

  • Rekos K, Kampouraki Z-C, Panou C, Baspanelou A, Triantafyllidis K, Deliyanni E (2020) Adsorption of DBT and 4,6-DMDBTon nanoporous activated carbons: the role of surface chemistry and the solvent. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08242-0

  • Sadare OO, Daramola MO (2019) Adsorptive desulfurization of dibenzothiophene (DBT) in model petroleum distillate using functionalized carbon nanotubes. Environ Sci Pollut Res 26:32746–32758

    Article  CAS  Google Scholar 

  • Salavati-Niasari M, Mir N, Davar F (2010) A novel precursor for synthesis of metallic copper nanocrystals by thermal decomposition approach. Appl Surf Sci 256:4003–4008

    Article  CAS  Google Scholar 

  • Sarda KK, Bhandari A, Pant KK, Jain S (2012) Deep desulfurization of diesel fuel by selective adsorption over Ni/Al2O3 and Ni/ZSM-5 extrudates. Fuel 93:86–91

    Article  CAS  Google Scholar 

  • Shi Y, Zhang X, Wang L, Liu G (2014) MOF-derived porous carbon for adsorptive desulfurization. AICHE J 60:2747–2751

    Article  CAS  Google Scholar 

  • Shu C, Sun T, Guo Q, Jia J, Lou Z (2014) Desulfurization of diesel fuel with nickel boride in situ generated in an ionic liquid. Green Chem 16:3881–3889

    Article  CAS  Google Scholar 

  • Shu C, Lai F, Zhu F, Luo D (2020) Optimal extractive and reductive desulfurization process using sodium borohydride in situ generated via sodium metaborate electroreduction in ionic liquid. Chem Eng Process Process Intensif 150:107869. https://doi.org/10.1016/j.cep.2020.107869

    Article  CAS  Google Scholar 

  • Srivastav A, Srivastava VC (2009) Adsorptive desulfurization by activated alumina. J Hazard Mater 170:1133–1140

    Article  CAS  Google Scholar 

  • Wang J, Guo Q, Zhang C, Li K (2014) One-pot extractive and oxidative desulfurization of liquid fuels with molecular oxygen in ionic liquids. RSC Adv 4:59885–59889

    Article  CAS  Google Scholar 

  • Xiong J, Zhu W, Li H, Ding W, Chao Y, Wu P, Xun S, Zhang M, Li H (2015) Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels. Green Chem 17:1647–1656

    Article  CAS  Google Scholar 

  • Yang RT, Hernandez-Maldonado AJ, Yang FH (2003) Desulfurization of transportation fuels with zeolites under ambient conditions. Science 34:79–81

    Article  CAS  Google Scholar 

  • Yang Y, Lu H, Ying P, Jiang Z, Li C (2007) Selective dibenzothiophene adsorption on modified activated carbons. Carbon 45:3042–3044

    Article  CAS  Google Scholar 

  • Yi N, Li C, Sun A, Meng H, Wang Z (2006) Extractive desulfurization of gasoline using imidazolium-based phosphoric ionic liquids. Energy Fuel 20:2083–2087

    Article  CAS  Google Scholar 

  • Yu S, Jiang Z, Li W, Mayta JQ, Ding H, Song Y, Li Z, Dong Z, Pan F, Wang B, Zhang P, Cao X (2018) Elevated performance of hybrid membranes by incorporating metal organic framework CuBTC for pervaporative desulfurization of gasoline. Chem Eng Process Process Intensif 123:12–19

    Article  CAS  Google Scholar 

  • Zhang Y, Yang Y, Han H, Yang M, Wang L, Zhang Y, Jiang Z, Li C (2012) Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: the effect of ZnO particle size on the adsorption performance. Appl Catal, B 119–120:13–19

    Article  CAS  Google Scholar 

  • Zhang W, Zhang H, Xiao J, Zhao Z, Yu M, Li Z (2013) Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen. Green Chem 16:211–220

    Article  Google Scholar 

  • Zhang X, Shi Y, Liu G (2015) Direct preparation of [(CH3)3NC16H33]4Mo8O26 and its catalytic performance in oxidative desulfurization. Catal Sci Technol 6:1016–1024

    Article  CAS  Google Scholar 

  • Zhou C, Wang Y, Huang X, Wu Y, Chen J (2020) Optimization of ultrasonic-assisted oxidative desulfurization of gasoline and crude oil. Chem Eng Process Process Intensif 147:107789. https://doi.org/10.1016/j.cep.2019.107789

    Article  CAS  Google Scholar 

  • Zhu W, Li H, Jiang X, Yan Y, Lu J, He L, Xia J (2008) Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids. Green Chem 10:641–646

    Article  CAS  Google Scholar 

  • Zhu W, Wu P, Yang L, Chang Y, Chao Y, Li H, Jiang Y, Wei J, Xun S (2013) Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chem Eng J 229:250–256

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial support from the Guangxi Natural Science Foundation (Grant No. 2018GXNSFBA281147), the Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi (Grant No. 2019KY0357), and the Guangxi Natural Science Foundation (Grant No. AD19110052).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Shuo Ai

Data curation: Xinsheng Li

Formal analysis: Shuo Ai

Funding acquisition: Shuo Ai

Investigation: Xinsheng Li

Methodology: Xinsheng Li

Project administration: Yongchun Huang

Resources: Wanguo Yu

Software: Zhijuan Mao

Supervision: Shuo Ai

Validation: Chengdu Huang

Visualization: Shuo Ai

Writing—original draft: Shuo Ai

Writing—review and editing: Shuo Ai

Corresponding author

Correspondence to Shuo Ai.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

All the authors declare that they participate in this work.

Consent to publish

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ai, S., Huang, Y. et al. Fast and reversible adsorption for dibenzothiophene in fuel oils with metallic nano-copper supported on mesoporous silica. Environ Sci Pollut Res 28, 2741–2752 (2021). https://doi.org/10.1007/s11356-020-10715-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10715-1

Keywords

Navigation