Skip to main content
Log in

Genetic and epigenetic perspective of microbiota

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The gut microbiota has an extremely important role within the body and it is necessary for the regulation of the metabolism of the host and also for the development of metabolic diseases such as obesity. Here, we show several different factors leading to obesity such as epigenetic changes and how they result in differences to occur in the gut microbiota, along with gut dysbiosis which is caused by disturbances in the microbiota homeostasis. Several studies have been explained in this paper, providing evidence in how these findings can actually decrease the susceptibility of obesity, whether it be by changing an individual’s diet pattern or observing the epigenetic changes which are taking place.

Key points

• The microbiota depends on an individual’s diet, lifestyle, environment, genetics and epigenetic profile.

• Changes of the gut microbiota can increase obesity susceptibility.

• Non-coding RNA has an important role in the metabolic homeostasis in check so if a disturbance occurs it can lead to resistance to obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amon P, Sanderson I (2017) What is the microbiome? Arch Dis Child Educ Pract Ed 102(5):257–260

    PubMed  Google Scholar 

  • Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4(11):430–435

    CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681

    CAS  PubMed  Google Scholar 

  • Bien J, Palagani V, Bozko P (2013) The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? TAG 6(1):53–68

    Google Scholar 

  • Choi SW, Friso S (2010) Epigenetics: a new bridge between nutrition and health. Adv Nutr 1(1):8–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costandi M (2012) Microbes on your mind. Sci Am Mind 23(3):32–37

    Google Scholar 

  • Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3(1):21–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA (2019) Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv Nutr 10(suppl_1):S17–S30

    PubMed  PubMed Central  Google Scholar 

  • Dávalos A, Goedeke L, Smibert P, Ramírez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. PNAS 108(22):9232–9237

    PubMed  PubMed Central  Google Scholar 

  • Demehri FR, Frykman PK, Cheng Z, Ruan C, Wester T, Nordenskjöld A, Kawaguchi A, Hui TT, Granström AL, Funari V, Teitelbaum DH (2016) Altered fecal short chain fatty acid composition in children with a history of Hirschsprung-associated enterocolitis. J Pediatr Surg 51(1):81–86

    PubMed  Google Scholar 

  • Dempsey J, Zhang A, Cui JY (2018) Coordinate regulation of long non-coding RNAs and protein-coding genes in germ-free mice. BMC genomics 19(1):834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devaux CA, Raoult D (2018) The microbiological memory, an epigenetic regulator governing the balance between good health and metabolic disorders. Front Microbiol 9:1379

    PubMed  PubMed Central  Google Scholar 

  • Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14(1):20–32

    CAS  PubMed  Google Scholar 

  • Dupont C, Armant DR, Brenner CA (2009) Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med Sep 27(5):351–357

    CAS  Google Scholar 

  • Hall AB, Tolonen AC, Xavier RJ (2017) Human genetic variation and the gut microbiome in disease. Nat Rev Genet 18(11):690

    CAS  PubMed  Google Scholar 

  • Janke R, Dodson AE, Rine J (2015) Metabolism and epigenetics. Annu Rev Cell Dev Bi 31:473–496

    CAS  Google Scholar 

  • Kahouli I, Tomaro-Duchesneau C, Prakash S (2013) Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol 62(8):1107–1123

    CAS  PubMed  Google Scholar 

  • Kalkan R, Altarda M, Tulay P, Tosun O (2019) The interaction between ESRRA and PTH gene methylation and body mass index in post-menopausal cases. Cyprus J Med Sci 4(3):247–250

    Google Scholar 

  • Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7(4):2839–2849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kok DE, Dhonukshe-Rutten RA, Lute C, Heil SG, Uitterlinden AG, van der Velde N, van Meurs JB, van Schoor NM, Hooiveld GJ, de Groot LC, Kampman E (2015) The effects of long-term daily folic acid and vitamin B 12 supplementation on genome-wide DNA methylation in elderly subjects. Clin Epigenetics 7(1):121

    PubMed  PubMed Central  Google Scholar 

  • Kopelman PG (2000) Obesity as a medical problem. Nature 404(6778):635–643

    CAS  PubMed  Google Scholar 

  • Kovacheva VP, Mellott TJ, Davison JM, Wagner N, Lopez-Coviella I, Schnitzler AC, Blusztajn JK (2007) Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J Biol Chem 282(43):31777–31788

    CAS  PubMed  Google Scholar 

  • Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, Keller MP, Attie AD, Rey FE, Denu JM (2016) Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64(5):982–992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H, Lund R, Laiho A, Lundelin K, Ley RE, Isolauri E, Salminen S (2014) Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. MBio 5(6):e02113–e02114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444(7122):1022–1023

    CAS  PubMed  Google Scholar 

  • Li G, Yao W, Jiang H (2014) Short-chain fatty acids enhance adipocyte differentiation in the stromal vascular fraction of porcine adipose tissue. J Nutr 144(12):1887–1895

    CAS  PubMed  Google Scholar 

  • Liang L, Ai L, Qian J, Fang JY, Xu J (2015) Long noncoding RNA expression profiles in gut tissues constitute molecular signatures that reflect the types of microbes. Sci Rep 5:11763

    PubMed  PubMed Central  Google Scholar 

  • Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock LE, Gandhi R, Weiner HL (2016) The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19(1):32–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC, Roeselers G (2014) Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5(4):e01438–e01414

    PubMed  PubMed Central  Google Scholar 

  • Mahmoud AM, Ali MM (2019) Methyl donor micronutrients that modify DNA methylation and cancer outcome. Nutrients 11(3):608

    CAS  PubMed Central  Google Scholar 

  • Marlicz W, Skonieczna-Żydecka K, Dabos KJ, Łoniewski I, Koulaouzidis A (2018) Emerging concepts in non-invasive monitoring of Crohn’s disease. TAG 11:1756284818769076

    Google Scholar 

  • Mischke M, Plösch T (2013) More than just a gut instinct–the potential interplay between a baby's nutrition, its gut microbiome, and the epigenome. AJPREGU 304(12):R1065–R1069

    CAS  Google Scholar 

  • Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293(5532):1103–1105

    PubMed  Google Scholar 

  • Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, Queipo-Ortuño MI (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC medicine 11(1):46

    PubMed  PubMed Central  Google Scholar 

  • Orouji E, Utikal J (2018) Tackling malignant melanoma epigenetically: histone lysine methylation. Clin Epigenetics 10(1):1–16

    Google Scholar 

  • Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, Tollefsbol TO (2015) Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin epigenetics 7(1):112

    PubMed  PubMed Central  Google Scholar 

  • Peterson CT, Sharma V, Elmén L, Peterson SN (2015) Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol 179(3):363–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Wade PA (2018) Crosstalk between the microbiome and epigenome: messages from bugs. J Biochem 163(2):105–112

    CAS  PubMed  Google Scholar 

  • Raskov H, Burcharth J, Pommergaard HC (2017) Linking gut microbiota to colorectal cancer. J cancer 8(17):3378

    PubMed  PubMed Central  Google Scholar 

  • Remely M, Lovrecic L, De La Garza AL, Migliore L, Peterlin B, Milagro FI, Martinez AJ, Haslberger AG (2015) Therapeutic perspectives of epigenetically active nutrients. Brit J Pharmacol 172(11):2756–2768

    CAS  Google Scholar 

  • Romano KA, Rey FE (2018) Is maternal microbial metabolism an early-life determinant of health? Lab animal 47(9):239–243

    PubMed  Google Scholar 

  • Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3(1):118–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabit H, Cevik E, Tombuloglu H (2019) Colorectal cancer: the epigenetic role of microbiome. World J Clin Cases 7(22):3683–3697

    PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Abujamra AL, Loew JE, Forman LW, Perrine SP, Faller DV (2011) Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Res 31(9):2723–2732

    CAS  PubMed  Google Scholar 

  • Shanahan F (2013) The colonic microbiota in health and disease. Curr Opin Gastroen 29(1):49–54

    CAS  Google Scholar 

  • Sharma M, Li Y, Stoll ML, Tollefsbol TO (2019) The epigenetic connection between the gut microbiome in obesity and diabetes. Front Genet 10:1329. https://doi.org/10.3389/fgene.2019.01329

    Article  PubMed  Google Scholar 

  • Shekar C, Kaul G (2019) Butyrate: a simple gut microbiota metabolite in the modulation of epigenetic mechanism. Curr Sci 117(3)

  • Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, Ahmed S, Shu J, Chen X, Waterland RA, Issa JPJ (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3(10):2023–2036

    CAS  PubMed  Google Scholar 

  • Strozzi GP, Mogna L (2008) Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol 42:S179–S184

    CAS  PubMed  Google Scholar 

  • Tamboli CP, Neut C, Desreumaux P, Colombel JF (2004) Dysbiosis in inflammatory bowel disease. Gut 53(1):1–4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836

    CAS  PubMed  Google Scholar 

  • Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474(7353):649–653

    CAS  PubMed  Google Scholar 

  • Ursell LK, Metcalf JL, Parfrey LW, Knight R (2012) Defining the human microbiome. Nutr rev 70(suppl_1):S38–S44

    PubMed  Google Scholar 

  • Virtue AT, McCright SJ, Wright JM, Jimenez MT, Mowel WK, Kotzin JJ, Joannas L, Basavappa MG, Spencer SP, Clark ML, Eisennagel SH (2019) The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med 11(496):eaav1892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang P, Li D, Hu X, Chen F (2020) Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur J Nutr 59(2):699–718

    CAS  PubMed  Google Scholar 

  • Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18(9):517

    CAS  PubMed  Google Scholar 

  • Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, Honda K (2014) Erratum: obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 506(7488):396

    CAS  Google Scholar 

  • Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE (2018) Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS One 13(7):e0201073

    PubMed  PubMed Central  Google Scholar 

  • Zeisel S (2017) Choline, other methyl-donors and epigenetics. Nutrients 9(5):445

    PubMed Central  Google Scholar 

  • Zhang S, Yang J, Henning SM, Lee R, Hsu M, Grojean E, Pisegna R, Ly A, Heber D, Li Z (2017) Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet. Anaerobe 48:184–193

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RK: project administration, conceptualization, data handling, writing and reviewing. CC: draft preparation and writing. All authors read and approved the manuscript.

Corresponding author

Correspondence to Rasime Kalkan.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celiker, C., Kalkan, R. Genetic and epigenetic perspective of microbiota. Appl Microbiol Biotechnol 104, 8221–8229 (2020). https://doi.org/10.1007/s00253-020-10849-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10849-9

Keywords

Navigation