Skip to main content

Advertisement

Log in

Multimarker approach to assess the exposure of the wild rodent Calomys laucha to a simulated crude oil spill

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A mysterious oil spill occurred in the ocean near Brazil in 2019, which affected coastal areas in northeastern Brazil. When oil pollution occurs in coastal zones, organisms such as small mammals can suffer deleterious effects to their health. This study aimed to evaluate the effects of exposure to contaminated sandy soil with different crude oil concentrations in males of the species Calomys laucha. The exposure to crude oil resulted in multiple health issues for the subjects in the very first days of exposure. Furthermore, the exposure resulted in mutagenic damage to bone marrow blood cells and behavioral and morphological alterations, which were almost always in a dose-dependent form. The present study demonstrates the sensibility of the biomarkers used and highlights that small wild mammals such as C. laucha are useful for predicting environmental damage caused by the exposure to crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbasian F, Lockington R, Megharaj M, Naidu R (2016) The biodiversity changes in the microbial population of soils contaminated with crude oil. Curr Microbiol 72(6):663–670

    Article  CAS  Google Scholar 

  • Benvindo-Souza M, Borges RE, Pacheco SM, Santos LR d S (2019) Genotoxicological analyses of insectivorous bats (Mammalia: Chiroptera) in central Brazil: the oral epithelium as an indicator of environmental quality. Environ Pollut 245:504–509. https://doi.org/10.1016/j.envpol.2018.11.015

    Article  CAS  Google Scholar 

  • Bilham K, Newman C, Buesching CD, Noonan MJ, Boyd A, Smith AL, Macdonald DW (2018) Effects of weather conditions on oxidative stress, oxidative damage, and antioxidant capacity in a wild-living mammal, the European badger (Meles meles). Physiol Biochem Zool 91:987–1004. https://doi.org/10.1086/698609

    Article  Google Scholar 

  • Bluhm K, Heger S, Redelstein R, Brendt J, Anders N, Mayer P, Schaeffer A, Hollert H (2018) Genotoxicity of three biofuel candidates compared to reference fuels. Environ Toxicol Pharmacol 64:131–138. https://doi.org/10.1016/j.etap.2018.10.003

    Article  CAS  Google Scholar 

  • Coppock RW, Christian RG (2007) Petroleum. In: Veterinary Toxicology, pp 615–639. https://doi.org/10.1016/B978-012370467-2/50151-6

    Chapter  Google Scholar 

  • Da Silva Júnior FMR, De Almeida KA, Silva PF, Muccillo-Baisch AL (2013) Hematological profile as a crude oil exposure- related marker in wild rodents. J Biosci Biotechnol 2:89–94

  • Da Silva Júnior FMR, Monarca RI, Dias D, Da Graça Ramalhinho M, Da Luz Mathias M, Muccillo-Baisch AL (2013a) Geno- and cyto-toxicity in free-living rodent mus spretus exposed to simulated onshore oil spill. Bull Environ Contam Toxicol 91:465–468. https://doi.org/10.1007/s00128-013-1080-x

    Article  CAS  Google Scholar 

  • da Silva Júnior FMR, Silva PF, Garcia EM, Klein RD, Peraza-Cardoso G, Baisch PR, Vargas VMF, Muccillo-Baisch AL (2013b) Toxic effects of the ingestion of water-soluble elements found in soil under the atmospheric influence of an industrial complex. Environ Geochem Health 35:317–331. https://doi.org/10.1007/s10653-012-9496-5

    Article  CAS  Google Scholar 

  • da Silva Júnior FMR, Eslava-Martins S, Muccillo-Baisch AL, Mathias M d L (2017) Mus spretus as an environmental sentinel: a review of 17 years (1998–2015) of research in Mediterranean Europe. Ecol Indic 73:61–67. https://doi.org/10.1016/j.ecolind.2016.09.037

    Article  CAS  Google Scholar 

  • da Silva Júnior FMR, Pinto EA, da Silveira TB, Garcia EM, de Oliveira AMN, Muccillo-Baisch AL (2018) Feet in danger: short exposure to contaminated soil causing health damage—an experimental study. Environ Sci Pollut Res 25:8669–8675. https://doi.org/10.1007/s11356-018-1229-6

    Article  Google Scholar 

  • da Silva Júnior FMR, Mendonça FS, Volcão LM, Honscha LC (2019) Ecotoxicological assessment of BTEX to soil organisms using a terrestrial microcosm: multispecies soil system (MS-3). Int J Environ Sci Technol 16(8):4465–4470

    Article  Google Scholar 

  • Da Silva Júnior FMR, Monarca RI, Dias D, Ramalhinho MG, Mathias ML, Muccillo-Baisch AL (2012) Physiological damage in Algerian mouse Mus spretus (Rodentia : Muridae ) exposed to crude oil. J Biosci Biotechnol 1:125–133

  • De Almeida KA, Da Silva Júnior FMR, Garcia EM, Muccillo-Baisch AL (2018) Sperm alterations in the Vesper mouse Calomys laucha exposed to soil contaminated with crude oil. VITTALLE - Rev. Ciências da Saúde 30, 31–37. https://doi.org/10.14295/vittalle.v30i2.8043

  • Doherty FV, Aneyo I, Otitoloju AA (2019) Histopathological and biochemical alterations in Eudrilus eugeniae (Kinberg 1867) as biomarkers of exposure to monocyclic aromatic hydrocarbons in oil impacted site. J Basic Appl Zool 80(1):63

    Article  Google Scholar 

  • Dorn PB, Vipond TE, Salanitro JP, Wisniewski HL (1998) Assessment of the acute toxicity of crude oils in soils using earthworms, Microtox (R) and plants. Chemosphere. 37:845–860

    Article  CAS  Google Scholar 

  • Escobar H (2019) Mystery oil spill threatens marine sanctuary in Brazil. Science (80- ) 366:672–672. https://doi.org/10.1126/science.366.6466.672

    Article  CAS  Google Scholar 

  • Finch BE, Stubblefield WA (2019) Phototoxicity assessments of field sites in Barataria Bay, Louisiana, USA, and heavily weathered Macondo crude oil: 4 years after the Deepwater Horizon oil spill. Environ Toxicol Chem 38:1811–1819. https://doi.org/10.1002/etc.4464

    Article  CAS  Google Scholar 

  • Frenzel F, Oberemm A, Braeuning A, Lampen A (2018) Proteomic analysis of 2-monochloropropanediol (2-MCPD) and 2-MCPD dipalmitate toxicity in rat kidney and liver in a 28-days study. Food Chem Toxicol 121:1–10. https://doi.org/10.1016/j.fct.2018.08.013

    Article  CAS  Google Scholar 

  • Ingersoll C, Locke RM, Reavis C (2012) BP and the Deepwater Horizon disaster of 2010. MIT Sloan Sch Manag Case Study:10–110

  • Institoris L, Siroki O, Ündeger Ü, Basaran N, Banerjee BD, Desi I (2001) Detection of the effects of repeated dose combined propoxur and heavy metal exposure by measurement of certain toxicological, haematological and immune function parameters in rats. Toxicology 163(2-3):185–193

  • Jadhav SH, Sarkar SN, Patil RD, Tripathi HC (2007) Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Arch Environ Contam Toxicol 53:667–677. https://doi.org/10.1007/s00244-007-0031-0

    Article  CAS  Google Scholar 

  • Kanarbik L, Blinova I, Sihtmäe M, Künnis-Beres K, Kahru A (2014) Environmental effects of soil contamination by shale fuel oils. Environ Sci Pollut Res 21:11320–11330. https://doi.org/10.1007/s11356-014-3043-0

    Article  CAS  Google Scholar 

  • Klonne DR, Burns JM, Halder CA, Holdsworth CE, Ulrich CE (1987) Two‐Year Inhalation Toxicity Study of Petroleum Coke in Rats and Monkeys. Am J Ind Med 11(3):375–389

  • Ma J, Shen J, Liu Q, Fang F, Cai H, Guo C (2014) Risk assessment of petroleum-contaminated soil using soil enzyme activities and genotoxicity to Vicia faba. Ecotoxicology 23:665–673. https://doi.org/10.1007/s10646-014-1196-8

    Article  CAS  Google Scholar 

  • Marín-García DC, Adams RH, Hernández-Barajas R (2016) Effect of crude petroleum on water repellency in a clayey alluvial soil. Int J Environ Sci Technol 13:55–64. https://doi.org/10.1007/s13762-015-0838-6

    Article  CAS  Google Scholar 

  • Marques CC, Gabriel SI, Pinheiro T, Viegas-Crespo AM, Mathias M d L, Bebianno MJ (2008) Metallothionein levels in Algerian mice (Mus spretus) exposed to elemental pollution: an ecophysiological approach. Chemosphere 71:1340–1347. https://doi.org/10.1016/j.chemosphere.2007.11.024

    Article  CAS  Google Scholar 

  • Martínez-Jerónimo F, Villaseñor R, Ríos G, Espinosa-Chavez F (2005) Toxicity of the crude oil water-soluble fraction and kaolin-adsorbed crude oil on Daphnia magna (Crustacea: Anomopoda). Arch Environ Contam Toxicol 48:444–449. https://doi.org/10.1007/s00244-003-0220-4

    Article  CAS  Google Scholar 

  • McKee RH, Schreiner CA, Nicolich MJ, Gray TM (2013) Genetic toxicity of high-boiling petroleum substances. Regul Toxicol Pharmacol 67(2):S75–S85

    Article  CAS  Google Scholar 

  • Muccillo-Baisch AL, Mirlean N, Carrazzoni D, Soares MCF, Goulart GP, Baisch P (2012) Health effects of ingestion of mercury-polluted urban soil: an animal experiment. Environ Geochem Health 34:43–53. https://doi.org/10.1007/s10653-011-9389-z

    Article  CAS  Google Scholar 

  • Nadim F, Hoag GE, Liu S, Carley RJ, Zack P (2000) Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview. J Pet Sci Eng 26:169–178. https://doi.org/10.1016/S0920-4105(00)00031-0

    Article  CAS  Google Scholar 

  • Nakata H, Nakayama SMM, Oroszlany B, Ikenaka Y, Mizukawa H, Tanaka K, Harunari T, Tanikawa T, Darwish WS, Yohannes YB, Saengtienchai A, Ishizuka M (2017) Monitoring lead (Pb) pollution and identifying pb pollution sources in Japan using stable Pb isotope analysis with kidneys of wild rats. Int J Environ Res Public Health 14:56. https://doi.org/10.3390/ijerph14010056

    Article  CAS  Google Scholar 

  • Nunes AC, Mathias ML, Crespo AM. (2001. Morphological and haematological parameters in the Algerian mouse (Mus spretus) inhabiting an area contaminated with heavy metals. Environ Pollut 113(1):87–93

  • O’Brien PL, DeSutter TM, Casey FXM, Wick AF, Khan E (2017) Evaluation of soil function following remediation of petroleum hydrocarbons—a review of current remediation techniques. Curr Pollut Rep 3:192–205. https://doi.org/10.1007/s40726-017-0063-7

    Article  CAS  Google Scholar 

  • Organization for Economic Cooperation and Development (1997) 474. Mammalian erythrocyte micronucleus test., in: Guidelines for the Testing of Chemicals. OECD, Paris, p 21. https://doi.org/10.1787/9789264224292-en

    Book  Google Scholar 

  • Patrick-Iwauanyanwu KC, Onyemaenu CC, Wegwu MO, Ayalogu EO (2011) Hepatotoxic and nephrotoxic effects of kerosene and petrolcontaminated diets in wistar albino rats. Res J Environ Toxicol 5(1):49–57

  • Pereira R, Pereira ML, Ribeiro R, Gonçalves F (2006) Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environ Pollut 139:561–575. https://doi.org/10.1016/j.envpol.2005.04.038

    Article  CAS  Google Scholar 

  • Ramesh S, Bhattacharya D, Majrashi M, Morgan M, Prabhakar Clement T, Dhanasekaran M (2018) Evaluation of behavioral parameters, hematological markers, liver and kidney functions in rodents exposed to Deepwater Horizon crude oil and Corexit. Life Sci 199:34–40. https://doi.org/10.1016/j.lfs.2018.02.028

    Article  CAS  Google Scholar 

  • Reis N, Peracchi A, Pedro W, Lima I (2006) Mamiferos do Brasil, 1st edn. Universidade Estadual de Londrina, Londrina

    Google Scholar 

  • Ribeiro LR, Salvadori DMF, Marques EK (2003) Mutagênese Ambiental, 1st edn. Ulbra, Canoas

  • Russo A, Degrassi F (2018) Molecular cytogenetics of the micronucleus: still surprising. Mutat Res/Genet Toxicol Environ Mutagen 836:36–40. https://doi.org/10.1016/j.mrgentox.2018.05.011

    Article  CAS  Google Scholar 

  • Saalfeld GQ, Varela Junior AS, Castro T, Pereira FA, Gheller SMM, da Silva AC, Corcini CD, da Rosa CE, Colares EP (2018) Low atrazine dosages reduce sperm quality of Calomys laucha mice. Environ Sci Pollut Res 25:2924–2930. https://doi.org/10.1007/s11356-017-0657-z

    Article  CAS  Google Scholar 

  • Shahsavari E, Adetutu EM, Anderson PA, Ball AS (2013) Plant residues - a low cost, effective bioremediation treatment for petrogenic hydrocarbon-contaminated soil. Sci Total Environ 443:766–774. https://doi.org/10.1016/j.scitotenv.2012.11.029

    Article  CAS  Google Scholar 

  • Shahsavari E, Adetutu EM, Ball AS (2015) Phytoremediation and necrophytoremediation of petrogenic hydrocarbon- contaminated soils, in: Ansari A, Gill R, Lanza GLN (Eds.), Phytoremediation: Management of Environmental Contaminants. Springer, pp. 321–334. https://doi.org/10.1007/978-3-319-10969-5_26

  • Simonato JD, Guedes CLB, Martinez CBR (2008) Biochemical, physiological, and histological changes in the neotropical fish Prochilodus lineatus exposed to diesel oil. Ecotoxicol Environ Saf 69:112–120. https://doi.org/10.1016/j.ecoenv.2007.01.012

    Article  CAS  Google Scholar 

  • Sommer S, Buraczewska I, Kruszewski M (2020) Micronucleus assay: the state of art, and future directions. Int J Mol Sci 21:1534. https://doi.org/10.3390/ijms21041534

    Article  CAS  Google Scholar 

  • Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23:845–851. https://doi.org/10.1016/S1001-0742(10)60517-7

    Article  CAS  Google Scholar 

  • Tapisso JT, Marques CC, Mathias M d L, Ramalhinho M d G (2009) Induction of micronuclei and sister chromatid exchange in bone-marrow cells and abnormalities in sperm of Algerian mice (Mus spretus) exposed to cadmium, lead and zinc. Mutat Res Genet Toxicol Environ Mutagen 678:59–64. https://doi.org/10.1016/j.mrgentox.2009.07.001

    Article  CAS  Google Scholar 

  • Wang Y, Li F, Rong X, Song H, Chen J (2017) Remediation of petroleum-contaminated soil using bulrush straw powder, biochar and nutrients. Bull Environ Contam Toxicol 98:690–697. https://doi.org/10.1007/s00128-017-2064-z

    Article  CAS  Google Scholar 

  • Wolfsegger MJ, Jaki T, Dietrich B, Kunzler JA, Barker K (2009) A note on statistical analysis of organ weights in non-clinical toxicological studies. Toxicol Appl Pharmacol 240:117–122. https://doi.org/10.1016/j.taap.2009.06.012

    Article  CAS  Google Scholar 

  • Won EJ, Lee Y, Gang Y, Kim MS, Kim CJ, Kim HE, Lee KW, Chung CS, Kim K, Lee JS, Shin KH (2018) Chronic adverse effects of oil dispersed sediments on growth, hatching, and reproduction of benthic copepods: Indirect exposure for long-term tests. Mar Environ Res 137:225–233. https://doi.org/10.1016/j.marenvres.2018.04.001

    Article  CAS  Google Scholar 

  • World Health Organization (1998) Selected non-heterocyclic polycyclic aromatic hydrocarbons. Environ Heal Criteria

Download references

Acknowledgments

The authors thank the CAPES for providing master scholarships (KAA) and doctoral scholarships (JOP, PFR, RAV, CLFF, OVRJ).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)-Finance Code 001 and the Institutional Program for Internationalization (CAPES-PrInt). Thanks are due to FCT/MCTES for the financial support to CESAM (UID/AMB/50017/2019 and UIDP/50017/2020 + UIDB/50017/2020), through national funds.

Author information

Authors and Affiliations

Authors

Contributions

KAA was responsible for conducting the experiments and the data analysis. EMG, ALMB, MLM, and DD were co-responsible for the design of the experimental design and choice of the analyzed variables. JOP, RAT, CLFF, PFR, and OVRJ were responsible for analyzing and interpreting the data and writing the manuscript. FMRSJ supervised the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Flavio Manoel Rodrigues da Siva Júnior.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval and consent to participate

The experimental protocol was approved by the Animal Use Ethics Committee (CEUA/FURG 31/2011).

Consent for publication

Not applicable

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, K.A., Garcia, E.M., Penteado, J.O. et al. Multimarker approach to assess the exposure of the wild rodent Calomys laucha to a simulated crude oil spill. Environ Sci Pollut Res 28, 2236–2244 (2021). https://doi.org/10.1007/s11356-020-10673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10673-8

Keywords

Navigation