Skip to main content

Advertisement

Log in

Avocado kernels, an industrial residue: a source of compounds with insecticidal activity against silverleaf whitefly

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fruit processing waste, such as kernels (endocarp + seed) of avocado [Persea americana Mill. (Lauraceae)], could be used as raw material in the preparation of botanical insecticides. In light of this potential, this study assessed the insecticidal action of extracts and fractions from kernels of two avocado cultivars (Breda and Margarida) on Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B, an important pest species in tropical conditions. Ethanolic and aqueous extracts prepared from kernels of P. americana, regardless of the plant cultivar used, caused promising insecticidal activity to whitefly nymphs. Based on yield in crude extracts [10.32 and 9.85% (w/w), respectively, for cultivars Breda and Margarida], on the bioassay results with crude extracts and on the chemical profiles, the ethanolic extract of kernels of P. americana cv. Breda was chose for the continuation of the study. Thus, the ethanolic extract of kernels of cv. Breda (LC50 = 197.84 ppm and LC90 = 567.19 ppm) was selected and subjected to fractionation by the liquid-liquid partition technique. The hexane and dichloromethane fractions of this extract caused significant mortality of nymphs. The analysis using the ultraviolet (UV) and hydrogen nuclear magnetic resonance (1H NMR) showed the presence of long-chain aliphatic compounds (alkanols or acetogenins of Lauraceae), alkylfurans (or avocadofurans), and unsaturated fatty acids in these fractions, which are possibly related to bioactivity observed in B. tabaci, besides saccharides. The results show that kernels of P. americana are promising sources of compounds with insecticidal action for the control of B. tabaci biotype B, a great opportunity to transform environmental problems into eco-friendly solutions to agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe F, Nagafuji S, Okawa M, Kinjo J, Akahane H, Ogura T, Martinez-Alfaro MA, Reyes-Chilpa R (2005) Trypanocidal constituents in plants 5. Evaluation of some Mexican plants for their trypanocidal activity and active constituents in the seeds of Persea americana. Biol Pharm Bull 28:1314–1317

    CAS  Google Scholar 

  • Adesina JM, Jose AR, Rajashekar Y, Ileke KD (2016) Persea americana (Mill.) seed extracts: potential herbal larvicide control measure against Anopheles gambiae Giles, 1902 (Diptera: Culicidae) Malaria vector. Int J Mosq Res 3:14–17

    Google Scholar 

  • Alexandri E, Ahmed R, Siddiqui H, Choudhary MI, Tsiafoulis CG, Gerothanassis IP (2017) High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules 22(1-71):1663

    Google Scholar 

  • Ansante TF, Ribeiro LP, Vendramim JD (2017) Acute and chronic toxicities of an annonin-based commercial bioinsecticide and a joint mixture with a limonoid-based formulation to the fall armyworm. Neotrop Entomol 46:216–222

    CAS  Google Scholar 

  • Barbosa JC, Rezende JAM, Amorim L, Bergamim Filho A (2016) Temporal dynamics of Tomato Severe Rugose Virus and Bemisia tabaci in tomato fields in São Paulo, Brazil. J Phytopatrol 164:1–10

    Google Scholar 

  • Bernardi D, Ribeiro LP, Andreazza F, Neitzke C, Oliveira EE, Botton M, Nava DE, Vendramim JD (2017) Potential use of Annona by products to control Drosophila suzukii and toxicity to its parasitoid Trichopria anastrephae. Ind Crop Prod 110:30–35

    CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–252

    Google Scholar 

  • Cardoso P, Scarpassa J, Pretto-Giordano L, Otaguiri E, Yamada-Ogatta S, Nakazato G, Perugini M, Moreira I, Vilas-Bôas G (2017) Antibacterial activity of avocado extracts (Persea americana Mill.) against Streptococcus agalactiae. Phyton 85:218–224

    Google Scholar 

  • Chia TWR, Dykes GA (2010) Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars. Pharm Biol 48:753–756

    Google Scholar 

  • Cummings K, Schroeder CA (1942) Anatomy of the avocado fruit. California Avocado Soc Yearbook 27:56–64

    Google Scholar 

  • Dabas D, Shegog RM, Ziegler GR, Lambert JD (2013) Avocado (Persea americana) seed as a source of bioactive phytochemicals. Curr Pharm 19:6133–6140

    CAS  Google Scholar 

  • Dângelo RAC, Michereff-Filho M, Campos MR, Silva PS, Guedes RNC (2018) Insecticide resistance and control failure likelihood of the whitefly Bemisia tabaci (MEAM1; B biotype): a Neotropical scenario. Ann Appl Bot 172:88–99

    Google Scholar 

  • Deletre E, Chandre F, Barkman B, Menut C, Martin T (2016) Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies. Pest Manag Sci 72:179–189

    CAS  Google Scholar 

  • Ding H, Chin YW, Kinghorn AD, D’Ambrosio SM (2007) Chemopreventive characteristics of avocado fruit. Sem Cancer Biol 17:386–394

    Google Scholar 

  • Domergue F, Helms GL, Prusky D, Browse J (2000) Antifungal compounds from idioblast cells isolated from avocado fruits. Phytochemistry 54:183–189

    CAS  Google Scholar 

  • Emilie D, Mallent M, Menut C, Chandre F, Martin T (2015) Behavioral response of Bemisia tabaci (Hemiptera: Aleyrodidae) to 20 plant extracts. J Econ Entomol 108:1890–1901

    CAS  Google Scholar 

  • Fao (2017) FAOSTAT. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy. Available at http://www.fao.org/faostat/en/#rankings/countries_by_commodity. Accessed June 2019

  • Fariña AE, Rezende JAM, Wintermantel WM (2019) Expanding Knowledge of the Host Range of Tomato chlorosis virus and Host Plant Preference of Bemisia tabaci MEAM1. Plant Dis 103(6):1132-1137. https://doi.org/10.1094/PDIS-11-18-1941-RE

  • Finney DJ (1971) Probit Analysis, 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Fogné DS, Olivier G, Bassolé IHN, Nébié RC, Laurence M (2017) Susceptibility of MED-Q1 and MED-Q3 Biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) Populations to Essential and Seed Oils. J Econ Entomol 110(3)1031–1038. https://doi.org/10.1093/jee/tox100

  • Francisco VLF, Baptistella CSL (2005) Cultura do abacate no estado de São Paulo. Inf Econ 35:27–41

    Google Scholar 

  • Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Ann Rev Virol 2:67–93

    CAS  Google Scholar 

  • Infante J, Selani MM, Toledo NMV, Silveira-Diniz MF, Alencar SM, Spoto MHF (2013) Atividade antioxidante de resíduos agroindustriais de frutas tropicais. Alim Nutr 24:87–91

    CAS  Google Scholar 

  • Jiménez-Arellanes A, Luna-Herrera J, Ruiz-Nicolas R, Cornejo-Garrido J, Tapia A, Yepez-Mulia L (2013) Antiprotozoal and antimycobacterial activities of Persea Americana seeds. BMC Complement Altern Med 13:109–114

    Google Scholar 

  • Kaouadji M, Thomasson F, Bennini B, Chulia AJ (1992) Flavonoid glycosides from Erica cinerea. Phytochemistry 31:2483–2486

    Google Scholar 

  • Leite JJG, Brito EHS, Cordeiro RA, Brilhante RSN, Sidrim JJC, Bertini LM, Morais SM, Rocha MFG (2009) Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev Soc Bras Med Trop 42:110–113

    Google Scholar 

  • Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215

    CAS  Google Scholar 

  • Naveen NC, Chaubery R, Kumar D, Rebijith KB, Rajagopal R, Subrahmanyam B, Subramanian S (2017) Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Sci Rep 7:40634

    CAS  Google Scholar 

  • Néeman I, Lifshitz A, Kashman Y (1970) New antibacterial agent isolated from the avocado pear. Appl Microbiol 19:470–473

    Google Scholar 

  • Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects – a review. Plant Protect Sci 52:229–241

    CAS  Google Scholar 

  • Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007

    CAS  Google Scholar 

  • Platt KA, Thomson WW (1992) Idioblast oil cells of avocado: distribution, isolation, ultrastructure, histochemistry, and biochemistry. I J Plant Sci 153:301–310

    CAS  Google Scholar 

  • Ragasa CY, Galian RF, Lagueux E, Shen CC (2014) Chemical constituents of the fruit of Persea Americana. Res J Pharm Biol Chem Sci 5:984–987

    Google Scholar 

  • Ribeiro LP, Vendramim JD, Padoan GL, Ansante TF, Gloria EM, Lopes JC, Mello-Silva R, Fernandes JB (2016) Searching for promising sources of grain protectors in extracts from Neotropical Annonaceae. Blacpma 15:215–232

    Google Scholar 

  • Rodríguez-Sánchez D, Silva-Platas C, Rojo RP, García N, Cisneros-Zevallos L, García-Rivas G, Hernández-Brenes C (2013) Activity-guided identification of acetogenins as novel lipophilic antioxidants present in avocado pulp (Persea americana). J Chromatogr B 942-943:37–45

    Google Scholar 

  • Rodriguez-Saona C, Maynard DF, Phillips S, Trumble JT (1999) Alkylfurans: effects of alkyl side-chain length on insecticidal activity. J Nat Prod 62:191–193

    CAS  Google Scholar 

  • Rodriguez-Saona C, Millar JG, Maynard DF, Trumble JT (1998) Novel antifeedant and insecticidal compounds from avocado idioblast cell oil. Chem Ecol 24:867–889

    CAS  Google Scholar 

  • Rodriguez-Saona C, Millar JG, Trumble JT (1998) Isolation, identification, and biological activity of isopersin, a new compound from avocado idioblast oil cells. J Nat Prod 61:1168–1170

    CAS  Google Scholar 

  • Rodriguez-Saona C, Trumble JT (2000) Biologically active aliphatic acetogenins from specialized idioblast oil cells. Curr Org Chem 4:1249–1260

    CAS  Google Scholar 

  • Rönnols J, Pendrill R, Fontana C, Hamark C, D’Ortoli TA, Engström O, Ståhle J, Zaccheus MV, Säwén E, Hahn LE, Iqbal S, Widmalm G (2013) Complete 1H and 13C NMR chemical shift assignments of mono-to tetrasaccharides as basis for NMR chemical shift predictions of oligosaccharides using the computer program CASPER. Carbohydr Res 380:156–166

    Google Scholar 

  • Santa-Cecília LVC, Santa-Cecília FV, Pedroso EC, Souza MV, Abreu FA, Oliveira DV, Carvalho GA (2010) Extratos de plantas no controle de Planococcus citri (Risso, 1813) (Hemiptera: Pseudococcidae) em cafeeiro. Coffee Sci 5:283–293

    Google Scholar 

  • Santos PML, Schripsema J, Kuster RM (2005) Flavonóides O-glicosilados de Croton campestris St. Hill. (Euphorbiaceae). Rev Bras Farmacogn 15:321–325

    Google Scholar 

  • SAS Institute Inc. (2008) SAS statistical software: Release 9.2. SAS Institute Inc., Cary

    Google Scholar 

  • Software LO (2003) Polo Plus. Probit and logit analysis. LeOra Software, Berkeley

    Google Scholar 

  • Souza CM, Baldin ELL, Ribeiro LP, Santos TLB, Silva IF, Morando R, Vendramim JD (2019) Antifeedant and growth inhibitory effects of Annonaceae derivatives on Helicoverpa armigera (Hübner). Crop Prot 121:45–50

    Google Scholar 

  • Stein U, Klingauf F (1990) Insecticidal effect of plant extracts from tropical and subtropical species. Traditional methods are good as long as they are effective. J Appl Entomol 110:160–166

    Google Scholar 

  • Tesfay SZ (2009) Special carbohydrates of avocado – their function as ‘sources of energy’ and ‘anti-oxidants’. 181p. PhD thesis. University of KwaZulu-Natal, Faculty of Science and Agriculture, Pietermaritzburg, South Africa

  • Thomson WW, Platt KA, Trumble JT, Rodriguez-Saona C (2000) Insecticidal avocadofurans and triolein. Patent. Available at: https://www.google.com/patents/US6133313

Download references

Acknowledgments

The authors thank the National Institute of Science and Technology in Biorational Insect Pest Control (INCT-CBIP), the Research Support Foundation of the State of São Paulo (FAPESP, grants 2010/52638-0, 2011/23030-7 and 2012/25299-6), and the National Council for Scientific and Technological Development (CNPq, grants 445518/2014-6 and 305377/2019-1) for financial support.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

Research Support Foundation of the State of São Paulo (FAPESP, grants 2010/52638-0, 2011/23030-7 and 2012/25299-6) and National Council for Scientific and Technological Development (CNPq, grants 445518/2014-6 and 305377/2019-1).

Author information

Authors and Affiliations

Authors

Contributions

LPR, SSC, and JDV planed and designed research; SSC and LPR conducted experiments; MRF, MFGFS, KUB, and KBF conducted chemical analysis; LPR, SSC, JDV, and JBF conducted statistical analysis and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Leandro do Prado Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Giovanni Benelli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, S.S., Ribeiro, L.d., Forim, M.R. et al. Avocado kernels, an industrial residue: a source of compounds with insecticidal activity against silverleaf whitefly. Environ Sci Pollut Res 28, 2260–2268 (2021). https://doi.org/10.1007/s11356-020-10675-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10675-6

Keywords

Navigation