Skip to main content

Advertisement

Log in

Changes in Autofluorescence Level of Live and Dead Cells for Mouse Cell Lines

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Label-free characterization of cell subpopulations is a very promising biomedical approach. Nowadays, there are several label-free methods based on different physical properties such as size, density, stiffness, etc. allowing the characterization of biological objects. However, fluorescence properties are the most suitable feature for the label-free study of tissue and cells. Understanding the autofluorescence level peculiarities of normal and pathological / live and dead cells can become a helpful tool for cells’ metabolic activity, viability evaluation, and diagnostics of a number of diseases. In this study, we applied a series of mouse cell lines (RAW 264.7 - macrophages, L929 - fibroblasts, C2C12 – myoblasts, and B16-F10 – melanoma) to compare cell autofluorescence of live and dead cells under 488 nm laser excitation and found the difference between their autofluorescence depending on a cell state and type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN (2020) Detection of rare objects by flow Cytometry: imaging, cell sorting, and deep learning approaches. Int J Mol Sci 21:2323. https://doi.org/10.3390/ijms21072323

    Article  CAS  Google Scholar 

  2. Bonner WA, Hulett HR, Sweet RG, Herzenberg LA (1972) Fluorescence activated cell sorting. Rev Sci Instrum 43:404–409. https://doi.org/10.1063/1.1685647

    Article  CAS  Google Scholar 

  3. Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA (2002) The history and future of the fluorescence activated cell sorter and flow Cytometry: a view from Stanford. Clin Chem 48:1819–1827. https://doi.org/10.1093/clinchem/48.10.1819

    Article  CAS  Google Scholar 

  4. Miltenyi S, Müller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238. https://doi.org/10.1002/cyto.990110203

    Article  CAS  Google Scholar 

  5. Richards-Kortum R, Sevick-Muraca E (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606. https://doi.org/10.1146/annurev.physchem.47.1.555

    Article  CAS  Google Scholar 

  6. Teale FWJ, Weber G (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem J 65:476–482. https://doi.org/10.1042/bj0650476

    Article  CAS  Google Scholar 

  7. Niyangoda C, Miti T, Breydo L, Uversky V, Muschol M (2017) Carbonyl-based blue autofluorescence of proteins and amino acids. PLoS One 12:e0176983. https://doi.org/10.1371/journal.pone.0176983

    Article  CAS  Google Scholar 

  8. Adams PD, Chen Y, Ma K, Zagorski MG, Sönnichsen FD, McLaughlin ML, Barkley MD (2002) Intramolecular quenching of tryptophan fluorescence by the peptide bond in cyclic Hexapeptides. J Am Chem Soc 124:9278–9286. https://doi.org/10.1021/ja0167710

    Article  CAS  Google Scholar 

  9. Shimasaki H, Ueta N, Privett OS (1980) Isolation and analysis of age-related fluorescent substances in rat testes. Lipids 15:236–241. https://doi.org/10.1007/BF02535833

    Article  CAS  Google Scholar 

  10. Tsuchida M, Miura T, Aibara K (1987) Lipofuscin and lipofuscin-like substances. Chem Phys Lipids 44:297–325. https://doi.org/10.1016/0009-3084(87)90055-7

    Article  CAS  Google Scholar 

  11. Riga D (2006) Brain Lipopigment accumulation in Normal and pathological aging. Ann N Y Acad Sci 1067:158–163. https://doi.org/10.1196/annals.1354.019

    Article  CAS  Google Scholar 

  12. Matsumoto Y (2001) Lipofuscin pigmentation in pleomorphic adenoma of the palate. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology 92:299–302. https://doi.org/10.1067/moe.2001.116820

    Article  CAS  Google Scholar 

  13. Shin SJ, Kanomata N, Rosen PP (2000) Mammary carcinoma with prominent cytoplasmic lipofuscin granules mimicking melanocytic differentiation. Histopathology 37:456–459. https://doi.org/10.1046/j.1365-2559.2000.01013.x

    Article  CAS  Google Scholar 

  14. Ball RY, Carpenter KLH, Mitchinson MJ (1987) What is the significance of ceroid in human atherosclerosis? Arch Pathol Lab Med 111:1134–1140

    CAS  Google Scholar 

  15. Stark WS, Miller G V., Itoku KA (1984) [42] calibration of microspectrophotometers as it applies to the detection of lipofuscin and the blue- and yellow-emitting fluorophores in situ. In: methods in enzymology. Pp 341–347

  16. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. In: Biotechnology Annual Review. pp. 227–256

  17. Heikal AA (2010) Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark Med 4:241–263. https://doi.org/10.2217/bmm.10.1

    Article  CAS  Google Scholar 

  18. Ying W (2008) NAD + /NADH and NADP + /NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206. https://doi.org/10.1089/ars.2007.1672

    Article  CAS  Google Scholar 

  19. Kierdaszuk B, Malak H, Gryczynski I, Callis P, Lakowicz JR (1996) Fluorescence of reduced nicotinamides using one- and two-photon excitation. Biophys Chem 62:1–13. https://doi.org/10.1016/S0301-4622(96)02182-5

    Article  CAS  Google Scholar 

  20. Kwong SCW, Rao G (1994) Metabolic monitoring by using the rate of change of NAD(P)H fluorescene. Biotechnol Bioeng 44:453–459. https://doi.org/10.1002/bit.260440408

    Article  CAS  Google Scholar 

  21. Vidugiriene J, Leippe D, Sobol M, Vidugiris G, Zhou W, Meisenheimer P, Gautam P, Wennerberg K, Cali JJ (2014) Bioluminescent cell-based NAD(P)/NAD(P)H assays for rapid dinucleotide measurement and inhibitor screening. Assay Drug Dev Technol 12:514–526. https://doi.org/10.1089/adt.2014.605

    Article  CAS  Google Scholar 

  22. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer US, Boston

    Book  Google Scholar 

  23. Masters BR, ChancE B (1999) Redox confocal imaging: intrinsic fluorescent probes of cellular metabolism. In: Fluorescent and Luminescent Probes for Biological Activity. Elsevier, pp. 361–374

  24. Mycek M-A, Pogue BW (2003) Handbook of biomedical fluorescence. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  25. Pitts JD, Sloboda RD, Dragnev KH, Dmitrovsky E, Mycek MA (2001) Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells. J Biomed Opt 6:31–40. https://doi.org/10.1117/1.1333057

    Article  CAS  Google Scholar 

  26. Croce AC, Spano A, Locatelli D, Barni S, Sciola L, Bottiroli G (2008) Dependence of fibroblast autofluorescence properties on Normal and transformed conditions. Role of the metabolic activity. Photochem Photobiol 69:364–374. https://doi.org/10.1111/j.1751-1097.1999.tb03300.x

    Article  Google Scholar 

  27. Borisova EG, Genova T, Bratashov D, et al (2020) Fluorescence spectroscopy and confocal fluorescence microscopy of colon benign and malignant lesions: comparative study. In: Tuchin V V., Genina EA (eds) Saratov fall meeting 2019: optical and Nano-Technologies for biology and medicine. SPIE, p 5

  28. Borisova E, Genova T, Bratashov D, Lomova M, Terziev I, Vladimirov B, Avramov L, Semyachkina-Glushkovskaya O (2019) Macroscopic and microscopic fluorescence spectroscopy of colorectal benign and malignant lesions - diagnostically important features. Biomed Opt Express 10:3009–3017. https://doi.org/10.1364/BOE.10.003009

    Article  CAS  Google Scholar 

  29. Freshney RI (2005) Culture of animal cells. John Wiley & Sons, Inc., Hoboken; NJ

  30. Kollias N, Baqer AH (1987) Absorption mechanisms of human melanin in the visible, 400–720nm. J Invest Dermatol 89:384–388. https://doi.org/10.1111/1523-1747.ep12471764

    Article  CAS  Google Scholar 

  31. Wu X, Hammer JA (2014) Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol 29:1–7. https://doi.org/10.1016/j.ceb.2014.02.003

    Article  CAS  Google Scholar 

  32. Riley PA (1997) Melanin. Int J Biochem Cell Biol 29:1235–1239. https://doi.org/10.1016/S1357-2725(97)00013-7

    Article  CAS  Google Scholar 

  33. Proskuryakov SY, Konoplyannikov AG, Gabai VL (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283:1–16. https://doi.org/10.1016/S0014-4827(02)00027-7

    Article  CAS  Google Scholar 

  34. Lee JK (2011) Anti-inflammatory effects of eriodictyol in lipopolysaccharide-stimulated raw 264.7 murine macrophages. Arch Pharm Res 34:671–679. https://doi.org/10.1007/s12272-011-0418-3

    Article  CAS  Google Scholar 

Download references

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Funding

This research was funded by the Russian Science Foundation grant number 18–19-00354.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia A. Kozlova.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Software: Jupyter Notebook, RRID:SCR_018315, CorelDRAW Graphics Suite, RRID:SCR_014235.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, A.A., Verkhovskii, R.A., Ermakov, A.V. et al. Changes in Autofluorescence Level of Live and Dead Cells for Mouse Cell Lines. J Fluoresc 30, 1483–1489 (2020). https://doi.org/10.1007/s10895-020-02611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02611-1

Keywords

Navigation