Skip to main content
Log in

Metabotropic Glutamate Receptor Subtype 7 Is Essential for Ejaculation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Metabotropic glutamate receptor subtype 7 (mGluR7) is a member of the group III mGluRs, which are negatively coupled to adenylate cyclase via Gi/Go proteins and localized to presynaptic active zones of the mammalian central nervous system (CNS). To elucidate the mechanism of impaired reproductivity of mGluR7 knockout (KO) mice, we investigated sexual behavior in this line, which exhibits ejaculatory disorder, although with normal sexual motivation and erectile function. To identify the site of action within the CNS responsible for the effect of mGluR7 on ejaculation, we then used a para-chloroamphetamine (PCA)-induced ejaculation model. Intrathecal administration of the mGluR7-selective antagonist 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP) into the lumbosacral spinal cord inhibited PCA-induced ejaculation. Immunohistochemistry revealed mGluR7-like immunoreactivity (LI) expressed in the same area where lumbar spinothalamic (LSt) cells regulate the parasympathetic ejaculatory pathway. At high magnification, the apposition of mGluR7-LI puncta and neuronal nitric oxide synthase (nNOS)-LI-positive putative parasympathetic preganglionic neurons was evident. These results indicate that mGluR7 in the lumbosacral spinal cord regulates ejaculation by potentiating the excitability of parasympathetic preganglionic neurons. The ejaculatory disorder is a major issue in the field of male reproductive function. Erectile dysfunction (ED) can be treated by phosphodiesterase type 5 inhibitors like sildenafil (Viagra®), but the ejaculatory disorder cannot. Lack of understanding of the ejaculatory mechanism hinders the development of therapies for ejaculatory problems. This study is the first to demonstrate that mGluR7 regulates ejaculation and the results provide insight into the mechanism of ejaculation as well as a strategy for future therapies to treat ejaculatory disorders in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  1. Lotti F, Maggi M (2018) Sexual dysfunction and male infertility. Nat Rev Urol 15(5):287–307. https://doi.org/10.1038/nrurol.2018.20

    Article  PubMed  Google Scholar 

  2. Mehta A, Sigman M (2015) Management of the dry ejaculate: a systematic review of aspermia and retrograde ejaculation. Fertil Steril 104(5):1074–1081. https://doi.org/10.1016/j.fertnstert.2015.09.024

    Article  PubMed  Google Scholar 

  3. Montorsi F, Adaikan G, Becher E, Giuliano F, Khoury S, Lue TF, Sharlip I, Althof SE et al (2010) Summary of the recommendations on sexual dysfunctions in men. J Sex Med 7(11):3572–3588. https://doi.org/10.1111/j.1743-6109.2010.02062.x

    Article  PubMed  Google Scholar 

  4. Hu J, Nagao K, Tai T, Kobayashi H, Nakajima K (2017) Randomized crossover trial of amoxapine versus vitamin B12 for retrograde ejaculation. Int Braz J Urol 43(3):496–504. https://doi.org/10.1590/S1677-5538.IBJU.2016.0468

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jannini EA, Lenzi A (2005) Ejaculatory disorders: epidemiology and current approaches to definition, classification and subtyping. World J Urol 23(2):68–75. https://doi.org/10.1007/s00345-004-0486-9

    Article  PubMed  Google Scholar 

  6. Wolters JP, Hellstrom WJ (2006) Current concepts in ejaculatory dysfunction. Rev Urol 8(Suppl 4):S18–S25

    PubMed  PubMed Central  Google Scholar 

  7. Halstead LS, Seager SW, Houston JM, Whitesell K, Dennis M, Nance PW (1993) Relief of spasticity in SCI men and women using rectal probe electrostimulation. Paraplegia 31(11):715–721. https://doi.org/10.1038/sc.1993.113

    Article  CAS  PubMed  Google Scholar 

  8. Szasz G, Carpenter C (1989) Clinical observations in vibratory stimulation of the penis of men with spinal cord injury. Arch Sex Behav 18(6):461–474. https://doi.org/10.1007/bf01541673

    Article  CAS  PubMed  Google Scholar 

  9. Truitt WA, Coolen LM (2002) Identification of a potential ejaculation generator in the spinal cord. Science 297(5586):1566–1569. https://doi.org/10.1126/science.1073885

    Article  CAS  PubMed  Google Scholar 

  10. Veening JG, Coolen LM (2014) Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits. Pharmacol Biochem Behav 121:170–183. https://doi.org/10.1016/j.pbb.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  11. Staudt MD, de Oliveira CV, Lehman MN, McKenna KE, Coolen LM (2011) Activation of NMDA receptors in lumbar spinothalamic cells is required for ejaculation. J Sex Med 8(4):1015–1026. https://doi.org/10.1111/j.1743-6109.2010.02168.x

    Article  CAS  PubMed  Google Scholar 

  12. Young B, Coolen L, McKenna K (2009) Neural regulation of ejaculation. J Sex Med 6(Suppl 3):229–233. https://doi.org/10.1111/j.1743-6109.2008.01181.x

    Article  PubMed  Google Scholar 

  13. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108. https://doi.org/10.1146/annurev.ne.17.030194.000335

    Article  CAS  PubMed  Google Scholar 

  14. Nakanishi S, Masu M (1994) Molecular diversity and functions of glutamate receptors. Annu Rev Biophys Biomol Struct 23:319–348. https://doi.org/10.1146/annurev.bb.23.060194.001535

    Article  CAS  PubMed  Google Scholar 

  15. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60(7-8):1017–1041. https://doi.org/10.1016/j.neuropharm.2010.10.022

    Article  CAS  PubMed  Google Scholar 

  16. Wierońska JM, Zorn SH, Doller D, Pilc A (2016) Metabotropic glutamate receptors as targets for new antipsychotic drugs: historical perspective and critical comparative assessment. Pharmacol Ther 157:10–27. https://doi.org/10.1016/j.pharmthera.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  17. Makoff A, Pilling C, Harrington K, Emson P (1996) Human metabotropic glutamate receptor type 7: molecular cloning and mRNA distribution in the CNS. Brain Res Mol Brain Res 40(1):165–170. https://doi.org/10.1016/0169-328x(96)00110-6

    Article  CAS  PubMed  Google Scholar 

  18. Kinoshita A, Shigemoto R, Ohishi H, van der Putten H, Mizuno N (1998) Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study. J Comp Neurol 393(3):332–352. https://doi.org/10.1002/(SICI)1096-9861(19980413)393:3<332::AID-CNE6>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  19. Kinzie JM, Saugstad JA, Westbrook GL, Segerson TP (1995) Distribution of metabotropic glutamate receptor 7 messenger RNA in the developing and adult rat brain. Neuroscience 69(1):167–176. https://doi.org/10.1016/0306-4522(95)00244-d

    Article  CAS  PubMed  Google Scholar 

  20. Ohishi H, Nomura S, Ding YQ, Shigemoto R, Wada E, Kinoshita A, Li JL, Neki A et al (1995) Presynaptic localization of a metabotropic glutamate receptor, mGluR7, in the primary afferent neurons: an immunohistochemical study in the rat. Neurosci Lett 202(1-2):85–88. https://doi.org/10.1016/0304-3940(95)12207-9

    Article  CAS  PubMed  Google Scholar 

  21. Okamoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem 269(2):1231–1236

    CAS  PubMed  Google Scholar 

  22. Saugstad JA, Kinzie JM, Mulvihill ER, Segerson TP, Westbrook GL (1994) Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors. Mol Pharmacol 45(3):367–372

    CAS  PubMed  Google Scholar 

  23. Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, Takada M, Flor PJ, Neki A et al (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17(19):7503–7522

    Article  CAS  Google Scholar 

  24. Allard J, Truitt WA, McKenna KE, Coolen LM (2005) Spinal cord control of ejaculation. World J Urol 23(2):119–126. https://doi.org/10.1007/s00345-004-0494-9

    Article  PubMed  Google Scholar 

  25. Cryan JF, Kelly PH, Neijt HC, Sansig G, Flor PJ, van Der Putten H (2003) Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 17(11):2409–2417

    Article  Google Scholar 

  26. Masugi M, Yokoi M, Shigemoto R, Muguruma K, Watanabe Y, Sansig G, van der Putten H, Nakanishi S (1999) Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J Neurosci 19(3):955–963

    Article  CAS  Google Scholar 

  27. Sansig G, Bushell TJ, Clarke VR, Rozov A, Burnashev N, Portet C, Gasparini F, Schmutz M et al (2001) Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J Neurosci 21(22):8734–8745. https://doi.org/10.1523/JNEUROSCI.21-22-08734.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogawa S, Robbins A, Kumar N, Pfaff DW, Sundaram K, Bardin CW (1996) Effects of testosterone and 7 alpha-methyl-19-nortestosterone (MENT) on sexual and aggressive behaviors in two inbred strains of male mice. Horm Behav 30(1):74–84. https://doi.org/10.1006/hbeh.1996.0011

    Article  CAS  PubMed  Google Scholar 

  29. Marciniak M, Chruścicka B, Lech T, Burnat G, Pilc A (2016) Expression of group III metabotropic glutamate receptors in the reproductive system of male mice. Reprod Fertil Dev 28(3):369–374. https://doi.org/10.1071/RD14132

    Article  CAS  PubMed  Google Scholar 

  30. Hull EM, Dominguez JM (2007) Sexual behavior in male rodents. Horm Behav 52(1):45–55. https://doi.org/10.1016/j.yhbeh.2007.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Semple E, Shalabi F, Hill JW (2019) Oxytocin neurons enable melanocortin regulation of male sexual function in mice. Mol Neurobiol 56(9):6310–6323. https://doi.org/10.1007/s12035-019-1514-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yonezawa A, Watanabe C, Ando R, Furuta S, Sakurada S, Yoshimura H, Iwanaga T, Kimura Y (2000) Characterization of p-chloroamphetamine-induced penile erection and ejaculation in anesthetized rats. Life Sci 67(25):3031–3039. https://doi.org/10.1016/s0024-3205(00)00895-x

    Article  CAS  PubMed  Google Scholar 

  33. Ju G, Melander T, Ceccatelli S, Hökfelt T, Frey P (1987) Immunohistochemical evidence for a spinothalamic pathway co-containing cholecystokinin- and galanin-like immunoreactivities in the rat. Neuroscience 20(2):439–456. https://doi.org/10.1016/0306-4522(87)90103-5

    Article  CAS  PubMed  Google Scholar 

  34. Saito S, Kidd GJ, Trapp BD, Dawson TM, Bredt DS, Wilson DA, Traystman RJ, Snyder SH et al (1994) Rat spinal cord neurons contain nitric oxide synthase. Neuroscience 59(2):447–456. https://doi.org/10.1016/0306-4522(94)90608-4

    Article  CAS  PubMed  Google Scholar 

  35. Valtschanoff JG, Weinberg RJ, Rustioni A (1992) NADPH diaphorase in the spinal cord of rats. J Comp Neurol 321(2):209–222. https://doi.org/10.1002/cne.903210204

    Article  CAS  PubMed  Google Scholar 

  36. Vizzard MA, Erdman SL, de Groat WC (1993) Localization of NADPH-diaphorase in pelvic afferent and efferent pathways of the rat. Neurosci Lett 152(1-2):72–76. https://doi.org/10.1016/0304-3940(93)90486-5

    Article  CAS  PubMed  Google Scholar 

  37. Masugi-Tokita M, Flor PJ, Kawata M (2016) Metabotropic glutamate receptor subtype 7 in the bed nucleus of the stria terminalis is essential for intermale aggression. Neuropsychopharmacology 41(3):726–735. https://doi.org/10.1038/npp.2015.198

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Higley A, Song R, Xi ZX (2013) Effects of metabotropic glutamate receptor ligands on male sexual behavior in rats. Neuropharmacology 66:373–381. https://doi.org/10.1016/j.neuropharm.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  39. Gee CE, Peterlik D, Neuhauser C, Bouhelal R, Kaupmann K, Laue G, Uschold-Schmidt N, Feuerbach D et al (2014) Blocking metabotropic glutamate receptor subtype 7 (mGlu7) via the venus flytrap domain (VFTD) inhibits amygdala plasticity, stress, and anxiety-related behavior. J Biol Chem 289(16):10975–10987. https://doi.org/10.1074/jbc.M113.542654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S (2016) Metabotropic glutamate receptor 7: from synaptic function to therapeutic implications. Curr Neuropharmacol 14(5):504–513. https://doi.org/10.2174/1570159x13666150716165323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palucha A, Klak K, Branski P, van der Putten H, Flor PJ, Pilc A (2007) Activation of the mGlu7 receptor elicits antidepressant-like effects in mice. Psychopharmacology 194(4):555–562. https://doi.org/10.1007/s00213-007-0856-2

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Li J, Peng XQ, Spiller K, Gardner EL, Xi ZX (2009) Metabotropic glutamate receptor 7 modulates the rewarding effects of cocaine in rats: involvement of a ventral pallidal GABAergic mechanism. Neuropsychopharmacology 34(7):1783–1796. https://doi.org/10.1038/npp.2008.236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pelkey KA, Lavezzari G, Racca C, Roche KW, McBain CJ (2005) mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron 46(1):89–102. https://doi.org/10.1016/j.neuron.2005.02.011

    Article  CAS  PubMed  Google Scholar 

  44. Pelkey KA, Yuan X, Lavezzari G, Roche KW, McBain CJ (2007) mGluR7 undergoes rapid internalization in response to activation by the allosteric agonist AMN082. Neuropharmacology 52(1):108–117. https://doi.org/10.1016/j.neuropharm.2006.07.020

    Article  CAS  PubMed  Google Scholar 

  45. Sukoff Rizzo SJ, Leonard SK, Gilbert A, Dollings P, Smith DL, Zhang MY, Di L, Platt BJ et al (2011) The metabotropic glutamate receptor 7 allosteric modulator AMN082: a monoaminergic agent in disguise? J Pharmacol Exp Ther 338(1):345–352. https://doi.org/10.1124/jpet.110.177378

    Article  CAS  PubMed  Google Scholar 

  46. Giuliano F, Rampin O (2000) Central neural regulation of penile erection. Neurosci Biobehav Rev 24(5):517–533. https://doi.org/10.1016/s0149-7634(00)00020-8

    Article  CAS  PubMed  Google Scholar 

  47. Chéhensse C, Bahrami S, Denys P, Clément P, Bernabé J, Giuliano F (2013) The spinal control of ejaculation revisited: a systematic review and meta-analysis of anejaculation in spinal cord injured patients. Hum Reprod Update 19(5):507–526. https://doi.org/10.1093/humupd/dmt029

    Article  CAS  PubMed  Google Scholar 

  48. Kolbeck SC, Steers WD (1992) Neural regulation of the vas deferens in the rat: an electrophysiological analysis. Am J Phys 263(2 Pt 2):R331–R338. https://doi.org/10.1152/ajpregu.1992.263.2.R331

    Article  CAS  Google Scholar 

  49. Millán C, Luján R, Shigemoto R, Sánchez-Prieto J (2002) The inhibition of glutamate release by metabotropic glutamate receptor 7 affects both [Ca2+]c and cAMP: evidence for a strong reduction of Ca2+ entry in single nerve terminals. J Biol Chem 277(16):14092–14101. https://doi.org/10.1074/jbc.M109044200

    Article  CAS  PubMed  Google Scholar 

  50. Shigemoto R, Kulik A, Roberts JD, Ohishi H, Nusser Z, Kaneko T, Somogyi P (1996) Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381(6582):523–525. https://doi.org/10.1038/381523a0

    Article  CAS  PubMed  Google Scholar 

  51. Pelkey KA, Topolnik L, Yuan XQ, Lacaille JC, McBain CJ (2008) State-dependent cAMP sensitivity of presynaptic function underlies metaplasticity in a hippocampal feedforward inhibitory circuit. Neuron 60(6):980–987. https://doi.org/10.1016/j.neuron.2008.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gupta J, Russell R, Wayman C, Hurley D, Jackson V (2008) Oxytocin-induced contractions within rat and rabbit ejaculatory tissues are mediated by vasopressin V1A receptors and not oxytocin receptors. Br J Pharmacol 155(1):118–126. https://doi.org/10.1038/bjp.2008.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen J (2016) The pathophysiology of delayed ejaculation. Transl Androl Urol 5(4):549–562. https://doi.org/10.21037/tau.2016.05.03

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jenkins LC, Mulhall JP (2015) Delayed orgasm and anorgasmia. Fertil Steril 104(5):1082–1088. https://doi.org/10.1016/j.fertnstert.2015.09.029

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We especially thank Dr. Herman van der Putten from the Novartis Institutes for BioMedical Research (Basel, Switzerland) for providing the mGluR7 KO mice and Dr. Ryoichiro Kageyama for providing an excellent research environment.

Funding

This work was supported by the Japan Society for the Promotion of Science KAKENHI (Grant Numbers 20500313 and 23500415 to MMT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miwako Masugi-Tokita.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

All animal protocols were compliant with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the Committee for Animal Research, Shiga University of Medical Science, and Kyoto University. Every effort was made to minimize any suffering of the animals used in this study. Animals were euthanized with cervical dislocation or CO2 inhalation in a chamber following approved protocols.

Consent to Participate

All authors approved the participation.

Consent for Publication

All authors have read the manuscript and approved the final version of the manuscript.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masugi-Tokita, M., Tomita, K., Kobayashi, K. et al. Metabotropic Glutamate Receptor Subtype 7 Is Essential for Ejaculation. Mol Neurobiol 57, 5208–5218 (2020). https://doi.org/10.1007/s12035-020-02090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02090-2

Keywords

Navigation