Skip to main content
Log in

Classification of error-related potentials from single-trial EEG in association with executed and imagined movements: a feature and classifier investigation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Error-related potentials (ErrPs) have been proposed for designing adaptive brain–computer interfaces (BCIs). Therefore, ErrPs must be decoded. The aim of this study was to evaluate ErrP decoding using combinations of different feature types and classifiers in BCI paradigms involving motor execution (ME) and imagination (MI). Fifteen healthy subjects performed 510 (ME) and 390 (MI) trials of right/left wrist extensions and foot dorsiflexions. Sham BCI feedback was delivered with an accuracy of 80% (ME) and 70% (MI). Continuous EEG was recorded and divided into ErrP and NonErrP epochs. Temporal, spectral, and discrete wavelet transform (DWT) marginals and template matching features were extracted, and all combinations of feature types were classified using linear discriminant analysis, support vector machine, and random forest classifiers. ErrPs were elicited for both ME and MI paradigms, and the average classification accuracies were significantly higher than the chance level. The highest average classification accuracy was obtained using temporal features and a combination of temporal + DWT features classified with random forest; 89 ± 9% and 83 ± 9% for ME and MI, respectively. These results generally indicate that temporal features should be used when detecting ErrPs, but there is great inter-subject variability, which means that user-specific features should be derived to maximize the performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. del R Millán J, Rupp R, Müller-Putz G, Murray-Smith R, Giugliemma C, Tangermann M, Vidaurre C, Cincotti F, Kubler A, Leeb R, Neuper C, Mueller KR, Mattia D (2010) Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4:161. https://doi.org/10.3389/fnins.2010.00161

    Article  Google Scholar 

  2. Ramos-Murguialday A, Broetz D, Rea M, Läer L, Yilmaz Ö, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, Cho W, Agostini M, Soares E, Soekadar S, Caria A, Cohen LG, Birbaumer N (2013) Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann.Neurol 74:100–108. https://doi.org/10.1002/ana.23879

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grosse-Wentrup M, Mattia D, Oweiss K (2011) Using brain–computer interfaces to induce neural plasticity and restore function. J Neural Eng 8:025004. https://doi.org/10.1088/1741-2560/8/2/025004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791. https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  PubMed  Google Scholar 

  5. Mohammadi R, Mahloojifar A, Coyle D (2013) Unsupervised short-term covariate shift minimization for self-paced BCI. IEEE symposium series on computational intelligence 101–106. doi:https://doi.org/10.1109/CCMB.2013.6609172

  6. Yazmir B, Reiner M (2018) Neural correlates of user-initiated motor success and failure–a brain–computer interface perspective. Neuroscience 378:100–112

    Article  CAS  PubMed  Google Scholar 

  7. Lopes-Dias C, Sburlea AI, Müller-Putz G (2019) Online asynchronous decoding of error-related potentials during the continuous control of a robot. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-54109-x

    Article  CAS  Google Scholar 

  8. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1991) Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Clin Neurophysiol 78:447–455. https://doi.org/10.1016/0013-4694(91)90062-9

    Article  CAS  Google Scholar 

  9. Parra L, Alvino C, Tang A, Pearlmutter B, Yeung N, Osman A, Sajda P (2002) Linear spatial integration for single-trial detection in encephalography. IEEE Trans Biomed Eng 55(3):223–230. https://doi.org/10.1006/nimg.2002.1212

    Article  Google Scholar 

  10. Blankertz B, Dornhege G, Schafer C, Krepki R, Kohlmorgen J, Muller K-R, Kunzmann V, Losch F, Curio G (2003) Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Eng Med Biol Soc 11(2):127–131. https://doi.org/10.1109/TNSRE.2003.814456

    Article  Google Scholar 

  11. Chavarriaga R, Sobolewski A, Millán JDR (2014) Errare machinale est: the use of error-related potentials in brain-machine interfaces. Front Neurosci 8:208. https://doi.org/10.3389/fnins.2014.00208

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lopes-Dias C, Sburlea AI, Müller-Putz G (2018) Masked and unmasked error-related potentials during continuous control and feedback. J Neural Eng 15:036031. https://doi.org/10.1088/1741-2552/aab806

    Article  PubMed  Google Scholar 

  13. Iturrate I, Chavarriaga R, Montesano L, Minguez J, Millán J d R (2014) Latency correction of event-related potentials between different experimental protocols. J Neural Eng 11:036005

    Article  CAS  PubMed  Google Scholar 

  14. Chavarriaga R, Millán J del R (2010) Learning from EEG error-related potentials in noninvasive brain-computer interfaces 18:381-388. IEEE transactions on neural systems and rehabilitation engineering doi: https://doi.org/10.1109/TNSRE.2010.2053387

  15. Omedes J, Schwarz A, Müller-Putz G, Montesano L (2018) Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI. J Neural Eng 15:046023. https://doi.org/10.1088/1741-2552/aac1a1

    Article  PubMed  Google Scholar 

  16. Iturrate I, Montesano L, Minguez J (2010) Robot reinforcement learning using EEG-based reward signals. IEEE Int Conf Rob Autom 4822–4829

  17. Bhattacharyya S, Konar A, Tibarewala DN, Hayashibe M (2017) A generic transferable EEG decoder for online detection of error potential in target selection. Front Neurosci 11:226. https://doi.org/10.3389/fnins.2017.00226

    Article  PubMed  PubMed Central  Google Scholar 

  18. Parra LC, Spence CD, Gerson AD, Sajda P (2003) Response error correction-a demonstration of improved human-machine performance using real-time EEG monitoring. IEEE Trans Neural Syst Rehab Eng 11:173–177. https://doi.org/10.1109/TNSRE.2003.814446

    Article  Google Scholar 

  19. Ehrlich SK, Cheng G (2018) Human-agent co-adaptation using error-related potentials. J Neural Eng 15(6):066014

    Article  PubMed  Google Scholar 

  20. Ehrlich SK, Cheng G (2019) A feasibility study for validating robot actions using eeg-based error-related potentials. Int J Soc Robot 11(2):271–283

    Article  Google Scholar 

  21. Kim SK, Kirchner EA, Stefes A, Kirchner F (2017) Intrinsic interactive reinforcement learning using error-related potentials for real world human-robot interaction. Sci Rep 7(1):1–16

    Article  Google Scholar 

  22. Spüler M, Niethammer C, Rosenstiel W, Bogdan M (2014) Classification of error-related potentials in EEG during continuous feedback. doi: https://doi.org/10.3217/978-3-85125-378-8-6

  23. Takahashi H, Yoshikawa T, Furuhashi T (2010) Reliability-based automatic repeat reQuest with error potential-based error correction for improving P300 speller performance. Neural information processing models and applications. Lecture notes in computer science 6444

  24. Niazi IK, Jiang N, Tiberghien O, Nielsen JF, Dremstrup K, Farina D (2011) Detection of movement intention from single-trial movement related cortical potentials. J Neural Eng 8(6):066009

    Article  PubMed  Google Scholar 

  25. Spüler M, Bensch M, Kleih S, Rosenstiel W, Bogdan M, Kübler A (2012) Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI. Clin Neurophysiol 123:1328–1337. https://doi.org/10.1016/j.clinph.2011.11.082

    Article  PubMed  Google Scholar 

  26. Omedes J, Iturrate I, Montesano L, Minguez J (2013, 2013) Using frequency-domain features for the generalization of EEG error-related potentials among different tasks. Conf Proc IEEE Eng Med Biol Sci:5263–5266. https://doi.org/10.1109/EMBC.2013.6610736

  27. Kreilinger A, Hiebel H, Müller-Putz G (2016) Single versus multiple events error potential detection in a BCI-controlled car game with continuous and discrete feedback. IEEE Trans Biomed Eng 63(3):519–529

    Article  PubMed  Google Scholar 

  28. Schalk G, Wolpaw JR, McFarland DJ, Pfurtscheller G (2000) EEG-based communication: presence of an error potential. Clin Neurophysiol 111:2138–2144. https://doi.org/10.1016/S1388-2457(00)00457-0

    Article  CAS  PubMed  Google Scholar 

  29. Mousavi M, de Sa VR (2019) Spatio-temporal analysis of error-related brain activity in active and passive brain–computer interfaces. Brain Comput Interfaces 6(4):118–127. https://doi.org/10.1080/2326263X.2019.1671040

    Article  Google Scholar 

  30. Tong J, Lin Q, Xiao R, Ding L (2016) Combining multiple features for error detection and its application in brain-computer interface. Biomed Eng Online 15. https://doi.org/10.1186/s12938-016-0134-9

  31. Ehrlich SK, Cheng G (2016) A neuro-based method for detecting context-dependent erroneous robot action. IEEE-RAS Int Conf Hum Rob 477-482 doi: https://doi.org/10.1109/HUMANOIDS.2016.7803318

  32. Spüler M, Niethammer C (2015) Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity. Front Hum Neurosci 9:155. https://doi.org/10.3389/fnhum.2015.00155

    Article  PubMed  PubMed Central  Google Scholar 

  33. Omedes J, Iturrate I, Montesano L (2014) Asynchronous detection of error potentials. Proceedings of the Brain-Computer Interface doi: https://doi.org/10.3217/978-3-85125-682-6-11

  34. Buttfield A, Ferrez PW, Millan JR (2006) Towards a robust BCI: error potentials and online learning. IEEE Trans Neural Syst Rehab Eng 14:164–168. https://doi.org/10.1109/TNSRE.2006.875555

    Article  Google Scholar 

  35. Iturrate I, Chavarriaga R, Montesano L, Minguez J, Millán JdR (2012) Latency correction of error potentials between different experiments reduces calibration time for single-trial classification. IEEE Eng Med Biol Soc : 3288–3291. https://doi.org/10.1109/EMBC.2012.6346667

  36. Ventouras EM, Asvestas P, Karanasiou I, Matsopoulos GK (2011) Classification of error-related negativity (ERN) and positivity (Pe) potentials using kNN and support vector machines. computers in biology and medicine 41:98-109. doi: https://doi.org/10.1016/j.compbiomed.2010.12.004

  37. Wang S, Lin C, Wu C, Chaovalitwongse WA (2011) Early detection of numerical typing errors using data mining techniques. IEEE Trans Syst Man Cybern Syst Hum 41:1199–1212. https://doi.org/10.1109/TSMCA.2011.2116006

    Article  Google Scholar 

  38. Ferrez PW, Millán J d R (2008) Error-related EEG potentials generated during simulated brain–computer interaction. IEEE Trans Biomed Eng 55:923–929. https://doi.org/10.1109/TBME.2007.908083

    Article  PubMed  Google Scholar 

  39. Zeyl T, Yin E, Keightley M, Chau T (2016) Adding real-time bayesian ranks to error-related potential scores improves error detection and auto-correction in a P300 speller. IEEE Trans Neural Syst Rehab Eng 24(1):46–56. https://doi.org/10.1109/TNSRE.2015.2461495

    Article  Google Scholar 

  40. Martin S, Rosenstiel W, Bogdan M (2012) Online adaptation of a c-VEP brain-computer interface (BCI) based on error-related potentials and unsupervised learning. PLoS One 7:12. https://doi.org/10.15496/publikation-4255

    Article  Google Scholar 

  41. Ferrez P.W, Millán J del R. (2008b) Simultaneous real-time detection of motor imagery and error-related potentials for improved BCI accuracy. Proceedings of the 4th Intl. brain-computer interface workshop and training course

  42. Niazi IK, Mrachacz-Kersting N, Jiang N, Dremstrup K, Farina D (2012) Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans Neural Syst Rehab Eng 20(4):595–604. https://doi.org/10.1109/TNSRE.2012.2194309

    Article  Google Scholar 

  43. Jochumsen M, Navid MS, Rashid U, Haavik H, Niazi IK (2019) EMG- versus EEG-triggered electrical stimulation for inducing corticospinal plasticity. IEEE Trans Neural Syst Rehab Eng 27(9):1901–1908. https://doi.org/10.1109/TNSRE.2019.2932104

    Article  Google Scholar 

  44. Jochumsen M, Niazi IK, Mrachacz-Kersting N, Jiang N, Farina D, Dremstrup K (2015) Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients. J Neural Eng 12(5):056003. https://doi.org/10.1088/1741-2560/12/5/056003

    Article  PubMed  Google Scholar 

  45. Jochumsen M, Niazi IK, Taylor D, Farina D, Dremstrup K (2015) Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single trial EEG. J Neural Eng 12(5):056013. https://doi.org/10.1088/1741-2560/12/5/056013

    Article  PubMed  Google Scholar 

  46. Dietrich C, Blume KR, Franz M, Huonker R, Carl M, Preißler S, Hofmann GO, Miltner WHR, Weiss T (2017) Dermatomal organization of SI leg representation in humans: revising the somatosensory homunculus. Cereb Cortex 27:4564–4569. https://doi.org/10.1093/cercor/bhx007

    Article  PubMed  Google Scholar 

  47. Nascimento OFd, Nielsen KD, Voigt M (2006) Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions. Exp Brain Res 171:78–90

    Article  PubMed  Google Scholar 

  48. Pfurtscheller G, Lopes da Silva FH (1991) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  Google Scholar 

  49. Farina D, de Nascimento OF, Lucas MF, Doncarli C (2007) Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. J Neurosci Methods 162(1–2):357–363. https://doi.org/10.1016/j.jneumeth.2007.01.011

    Article  PubMed  Google Scholar 

  50. Oshiro T M, Perez PS, Baranauskas J. A (2012) How many trees in a random forest? Machine learning and data mining in pattern recognition Lecture notes in computer science 7376

  51. Milekovic T, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C (2012) Error-related electrocorticographic activity in humans during continuous movements. J Neural Eng 9(2):1741–2552. https://doi.org/10.1088/1741-2560/9/2/026007

    Article  Google Scholar 

  52. Falkenstein M, Hoormann J, Christ S, Hohnsbein J (2000) ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol 51:87–107. https://doi.org/10.1016/S0301-0511(99)00031-9

    Article  CAS  PubMed  Google Scholar 

  53. Shibasaki H, Hallett M (2006) What is the bereitschaftspotential? Clin Neurophysiol 117:2341–2356

    Article  PubMed  Google Scholar 

  54. Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature 203:380–384

    Article  CAS  PubMed  Google Scholar 

  55. Salazar-Gomez AF, DelPreto J, Gil S, Guenther FH, Rus D (2017) Correcting robot mistakes in real time using EEG signals. IEEE international conference on robotics and automation 6570-6577 doi: https://doi.org/10.1109/ICRA.2017.7989777

  56. Nicolas-Alonso LF, Corralejo R, Gomez-Pilar J, Álvarez D, Hornero R (2015) Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain–computer interfaces. Neurocomputing 159:186–196. https://doi.org/10.1016/j.neucom.2015.02.005

    Article  Google Scholar 

  57. Kumar E, Pirogova JQ, Fang (2018) Classification of error-related potentials using linear discriminant analysis. Conf Biomed Eng Sci 18–21. https://doi.org/10.1109/IECBES.2018.8626709

  58. Müller-Putz G, Scherer R, Brunner C, Leeb R, Pfurtscheller G (2008) Better than random: a closer look on BCI results. Int J Bioelektromagnetism 10:52–55

    Google Scholar 

  59. Rahimi A, Tchouprina A, Kanerva P, Millán J del R(2017) Hyperdimensional computing for blind and one-shot classification of EEG error-related potentials. Mobile Netw Appl https://doi.org/10.1007/s11036-017-0942-6

  60. Karimi F, Kofman J, Mrachacz-Kersting N, Farina D, Jiang N (2017) Detection of movement related cortical potentials from EEG using constrained ICA for brain-computer interface applications. Front Neurosci 11:356. https://doi.org/10.3389/fnins.2017.00356

    Article  PubMed  PubMed Central  Google Scholar 

  61. Blankertz B, Lemm S, Treder M, Haufe S, Müller KR (2011) Single-trial analysis and classification of ERP components--a tutorial. Neuroimage 56(2):814–825. https://doi.org/10.1016/j.neuroimage.2010.06.048

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Jochumsen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usama, N., Kunz Leerskov, K., Niazi, I.K. et al. Classification of error-related potentials from single-trial EEG in association with executed and imagined movements: a feature and classifier investigation. Med Biol Eng Comput 58, 2699–2710 (2020). https://doi.org/10.1007/s11517-020-02253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02253-2

Keywords

Navigation