Skip to main content

Advertisement

Log in

The effect of Np-magnetite on the granulation process of an SBR reactor used for domestic wastewater treatment

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study investigated the effect of magnetite nanoparticles (Np-magnetite) added to a pilot-scale sequencing batch reactor (SBR) treating domestic wastewater, to improve aerobic granular sludge (AGS) formation and the effects of granule disintegration. Np-magnetite additions (75 mg L−1) were made during the start-up of the reactor and repeated after 100 and 170 days, when granule disintegration was observed. From the first Np-magnetite addition, SVI5 was reduced from 1315 to 85 mL g−1. The granular biomass was observed on the 56th day, when 57% of the granules presented diameters bigger than 212 µm. The 100-day disintegration episode disturbed the granular biomass, reducing the volatile suspended solids by 51%, increasing the SVI values to above 200 mL g−1. Np-magnetite addition recovered all the granular biomass parameters to the values observed before disintegration. The treatment efficiency was stable during operation of the reactor for nutrients (52.8 ± 23.4% NH4+–N; 54.5 ± 12.2% PO43−–P) and carbonaceous organic matter (71.7 ± 12.7% BOD5; 77.5 ± 10.0% CODt). Np-magnetite addition changed the microbial community of the granular sludge, analysed via high-throughput 16S RNA sequencing, and recovered the treatment efficiency previously disturbed by the disintegration processes. These results indicate the potential of Np-magnetite as an agent for sludge aggregation in an aerobic granular reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Kreuk MK, van Loosdrecht MCM (2006) Formation of aerobic granules with domestic sewage. J Environ Eng 132:694–697. https://doi.org/10.1061/(ASCE)0733-9372(2006)132

    Article  Google Scholar 

  2. Pronk M, de Kreuk MK, de Bruin B et al (2015) Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res 84:207–217. https://doi.org/10.1016/j.watres.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  3. Wagner J, Weissbrodt DG, Manguin V et al (2015) Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors. Water Res 85:158–166. https://doi.org/10.1016/j.watres.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  4. Val Del Río A, Figueroa M, Mosquera-Corral A et al (2013) Stability of aerobic granular biomass treating the effluent from a seafood industry. Int J Environ Res 7:265–276

    Google Scholar 

  5. Lee DJ, Chen YY, Show KY et al (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol Adv 28:919–934. https://doi.org/10.1016/j.biotechadv.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  6. Sarma SJ, Tay JH, Chu A (2017) Finding knowledge gaps in aerobic granulation technology. Trends Biotechnol 35:66–78. https://doi.org/10.1016/j.tibtech.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Jafari Kang A, Yuan Q (2017) Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads. Bioresour Technol 234:336–342. https://doi.org/10.1016/j.biortech.2017.03.057

    Article  CAS  PubMed  Google Scholar 

  8. Guimarães LB, Wagner J, Akaboci TRV et al (2018) Elucidating performance failures in use of granular sludge for nutrient removal from domestic wastewater in a warm coastal climate region. Environ Technol (United Kingdom). https://doi.org/10.1080/09593330.2018.1551938

    Article  Google Scholar 

  9. Corsino S, Capodici M, Torregrossa M, Viviani G (2016) Fate of aerobic granular sludge in the long-term: the role of EPSs on the clogging of granular sludge porosity. J Environ Manage 183:541–550

    Article  CAS  Google Scholar 

  10. Franca RDG, Pinheiro HM, van Loosdrecht MCM, Lourenço ND (2018) Stability of aerobic granules during long-term bioreactor operation. Biotechnol Adv 36:228–246. https://doi.org/10.1016/j.biotechadv.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  11. Mohammed L, Gomaa H, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    Article  CAS  Google Scholar 

  12. Abu-Dief AM, Abdel-Fatah SM (2018) Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Univ J Basic Appl Sci 7:55–67. https://doi.org/10.1016/j.bjbas.2017.05.008

    Article  Google Scholar 

  13. Jiang H, Tay J, Liu Y, Tay S (2003) Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors. Biotechnol Lett 25:95–99

    Article  CAS  Google Scholar 

  14. Wagner S, Gondikas A, Neubauer E et al (2014) Spot the difference: enginneered and natural nanoparticles in the environment—release, behavior and fate. Angew Chem Int Ed 53:12398–12419

    CAS  Google Scholar 

  15. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155. https://doi.org/10.1039/c0em00547a

    Article  CAS  PubMed  Google Scholar 

  16. Liu J, Sun Z, Deng Y et al (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem 121:5989–5993. https://doi.org/10.1002/ange.200901566

    Article  Google Scholar 

  17. Liang XY, Gao BY, Ni SQ (2017) Effects of magnetic nanoparticles on aerobic granulation process. Bioresour Technol 227:44–49. https://doi.org/10.1016/j.biortech.2016.12.038

    Article  CAS  PubMed  Google Scholar 

  18. Domingos DG, Henriques RO, Xavier JA et al (2019) Increasing activated sludge aggregation by magnetite nanoparticles addition. Water Sci Technol 79:993–999. https://doi.org/10.2166/wst.2019.055

    Article  CAS  PubMed  Google Scholar 

  19. Wang XH, Diao MH, Yang Y et al (2012) Enhanced aerobic nitrifying granulation by static magnetic field. Bioresour Technol 110:105–110. https://doi.org/10.1016/j.biortech.2012.01.108

    Article  CAS  PubMed  Google Scholar 

  20. Lee DG, Ponvel KM, Kim M et al (2009) Immobilization of lipase on hydrophobic nano-sized magnetite particles. J Mol Catal B Enzym 57:62–66. https://doi.org/10.1016/j.molcatb.2008.06.017

    Article  CAS  Google Scholar 

  21. Lochmatter S, Gonzalez-Gil G, Holliger C (2013) Optimized aeration strategies for nitrogen and phosphorus removal with aerobic granular sludge. Water Res 47:6187–6197. https://doi.org/10.1016/j.watres.2013.07.030

    Article  CAS  PubMed  Google Scholar 

  22. Schwarzenbeck N, Erley R, Wilderer PA (2004) Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Sci Technol 49:41–46. https://doi.org/10.2166/wst.2004.0799

    Article  CAS  PubMed  Google Scholar 

  23. Beun JJ, Van Loosdrecht MCM, Heijnen JJ (2002) Aerobic granulation in a sequencing batch airlift reactor. Water Res 36:702–712. https://doi.org/10.1016/S0043-1354(01)00250-0

    Article  CAS  PubMed  Google Scholar 

  24. Arrojo B, Mosquera-Corral A, Garrido JM, Méndez R (2004) Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Res 38:3389–3399. https://doi.org/10.1016/j.watres.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  25. McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dubois M, Gilles K, Hamilton J et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  27. Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  28. Laguna A, Ouattara A, Gonzalez RO et al (1999) A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge. Water Sci Technol 40:1–8. https://doi.org/10.1016/S0273-1223(99)00602-2

    Article  Google Scholar 

  29. APHA - American Public Health Association (2005) Standard methods for the examination of water and wastewater, 21st edn. Washington

  30. Anthonisen AC, Loehr RC, Prakasam TSB, Srinath G (1976) Inhibition of nitrification and nitrous acid compounds. J Water Pollut Control Fed 48:835–852

    CAS  PubMed  Google Scholar 

  31. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4:e7401

    Article  Google Scholar 

  32. Caporaso G, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  Google Scholar 

  33. Bassin JP, Tavares DC, Borges RC, Dezotti M (2019) Development of aerobic granular sludge under tropical climate conditions: the key role of inoculum adaptation under reduced sludge washout for stable granulation. J Environ Manag 230:168–182. https://doi.org/10.1016/j.jenvman.2018.09.072

    Article  CAS  Google Scholar 

  34. De Kreuk MK, Pronk M, Van Loosdrecht MCM (2005) Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures. Water Res 39:4476–4484. https://doi.org/10.1016/j.watres.2005.08.031

    Article  CAS  PubMed  Google Scholar 

  35. Nancharaiah YV, Sarvajith M (2019) Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment. Curr Opin Environ Sci Health 12:57–65. https://doi.org/10.1016/j.coesh.2019.09.011

    Article  Google Scholar 

  36. Nancharaiah YV, Sarvajith M, Krishna Mohan TV (2019) Aerobic granular sludge: the future of wastewater treatment. Curr Sci 117:395–404. https://doi.org/10.18520/cs/v117/i3/395-404

    Article  CAS  Google Scholar 

  37. Zhang L, Feng X, Zhu N, Chen J (2007) Role of extracellular protein in the formation ans stability of aerobic granules. Enzyme Microb Technol 41:551–557. https://doi.org/10.1016/j.enzmictec.2007.05.001

    Article  CAS  Google Scholar 

  38. Barros A, Rollemberg S, Carvalho C et al (2020) Effect of calcium addition on the formation and maintenance of aerobic granular sludge (AGS) in simultaneous fill-draw mode sequencing batch reactors (SBRs). J Environ Manage 22:533–563

    Google Scholar 

  39. Liu Y, Tay JH (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22:533–563. https://doi.org/10.1016/j.biotechadv.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  40. Li X, Li Y, Liu H et al (2007) Characteristics of aerobic biogranules from membrane bioreactor system. J Membr Sci 287:294–299. https://doi.org/10.1016/j.memsci.2006.11.005

    Article  CAS  Google Scholar 

  41. Ren TT, Liu L, Sheng GP et al (2008) Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Res 42:3343–3352. https://doi.org/10.1016/j.watres.2008.04.015

    Article  CAS  PubMed  Google Scholar 

  42. Sheng G, Yu H, Yue Z (2005) Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Appl Microbiol Biotechnol 69:216–222

    Article  CAS  Google Scholar 

  43. Zhou J, Sun Q (2020) Performance and microbial characterization of aerobic granular sludge in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal with varying C/N ratios. Bioprocess Biosyst Eng 43:663–672. https://doi.org/10.1007/s00449-019-02264-w

    Article  CAS  PubMed  Google Scholar 

  44. Li J, Ma L, Wei S, Horn H (2013) Aerobic granules dwelling vorticella and rotifers in an SBR fed with domestic wastewater. Sep Purif Technol 110:127–131. https://doi.org/10.1016/j.seppur.2013.03.022

    Article  CAS  Google Scholar 

  45. Kończak B, Karcz J, Miksch K (2014) Influence of calcium, magnesium, and iron ions on aerobic granulation. Appl Biochem Biotechnol 174:2910–2918. https://doi.org/10.1007/s12010-014-1236-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ab Halim MH, Nor Anuar A, Abdul Jamal NS et al (2016) Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater. J Environ Manage 184:271–280. https://doi.org/10.1016/j.jenvman.2016.09.079

    Article  CAS  PubMed  Google Scholar 

  47. Cai W, Jin M, Zhao Z et al (2018) Influence of ferrous iron dosing strategy on aerobic granulation of activated sludge and bioavailability of phosphorus accumulated in granules. Bioresour Technol Rep 2:7–14. https://doi.org/10.1016/j.biteb.2018.03.004

    Article  Google Scholar 

  48. Ni SQ, Ni J, Yang N, Wang J (2013) Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Bioresour Technol 143:555–561. https://doi.org/10.1016/j.biortech.2013.06.041

    Article  CAS  PubMed  Google Scholar 

  49. Xu H, Liu Y (2008) Mechanisms of Cd2+, Cu2+ and Ni2+ biosorption by aerobic granules. Sep Purif Technol 58:400–411. https://doi.org/10.1016/j.seppur.2007.05.018

    Article  CAS  Google Scholar 

  50. Yang S, Li X, Yu H (2008) Formation and characterization of fungal and bacterial granules under different feeding alkalinity and pH conditions. Process Biochem 43:8–14

    Article  Google Scholar 

  51. Daudt G, Xavier JA, Meotti B et al (2019) Researching new ways to reduce N2O emission from a granular sludge sequencing batch reactor treating domestic wastewater under subtropical climate conditions. Brazil J Chem Eng 36:209–220

    Article  CAS  Google Scholar 

  52. Huang W, Huang W, Li H et al (2015) Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge. Bioresour Technol 193:549–552. https://doi.org/10.1016/j.biortech.2015.06.120

    Article  CAS  PubMed  Google Scholar 

  53. Zhou J, Zhang Z, Zhao H et al (2016) Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress. Bioresour Technol 216:562–570. https://doi.org/10.1016/j.biortech.2016.05.079

    Article  CAS  PubMed  Google Scholar 

  54. Perazzoli S, Michels C, Soares HM (2017) Magnetite nanoparticles influence the ammonium-oxidizing bacteria activity during nitritation process. Water Sci Technol 75:165–172. https://doi.org/10.2166/wst.2016.497

    Article  CAS  PubMed  Google Scholar 

  55. He Q, Zhang S, Zou Z et al (2016) Unraveling characteristics of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in an aerobic granular sequencing batch reactor. Bioresour Technol 220:651–655. https://doi.org/10.1016/j.biortech.2016.08.105

    Article  CAS  PubMed  Google Scholar 

  56. Liu S, Horn H (2012) Effects of Fe(II) and Fe(III) on the single-stage deammonification process treating high-strength reject water from sludge dewatering. Bioresour Technol 114:12–19. https://doi.org/10.1016/j.biortech.2011.11.125

    Article  CAS  PubMed  Google Scholar 

  57. Yilmaz G, Cetin E, Bozkurt U, Aleksanyan MK (2017) Effects of ferrous iron on the performance and microbial community in aerobic granular sludge in relation to nutrient removal. Biotechnol Prog 33:716–725

    Article  CAS  Google Scholar 

  58. Rubio-Rincón FJ, Welles L, Lopez-Vazquez CM et al (2019) Effect of lactate on the microbial community and process performance of an EBPR system. Front Microbiol 10:1–11. https://doi.org/10.3389/fmicb.2019.00125

    Article  Google Scholar 

  59. Fang F, Liu X, Xu J et al (2009) Formation of aerobic granules and their PHB production at various substrate and ammonium concentrations. Bioresour Technol 100:59–63. https://doi.org/10.1016/j.biortech.2008.06.016

    Article  CAS  PubMed  Google Scholar 

  60. Karakas I, Sam SB, Cetin E et al (2020) Resource recovery from an aerobic granular sludge process treating domestic wastewater. J Water Process Eng 34:101148. https://doi.org/10.1016/j.jwpe.2020.101148

    Article  Google Scholar 

  61. Cheng Q, Huang Y, Nengzi L, Liu J, Zhang J (2019) Performance and microbial community profiles in pilot-scale biofilter for the simultaneous removal of ammonia, iron and manganese at different manganese concentrations. Bioprocess Biosyst Eng 42:741–752

    Article  CAS  Google Scholar 

  62. Lu YZ, Wang HF, Kotsopoulos TA, Zeng RJ (2016) Advanced phosphorus recovery using a novel SBR system with granular sludge in simultaneous nitrification, denitrification and phosphorus removal process. Appl Microbiol Biotechnol 100:4367–4374. https://doi.org/10.1007/s00253-015-7249-y

    Article  CAS  PubMed  Google Scholar 

  63. Wilén BM, Onuki M, Hermansson M et al (2008) Microbial community structure in activated sludge flocanalysed by fluorescence in situ hybridization and its relation to floc stability. Water Res 42:2300–2308

    Article  Google Scholar 

  64. Xia J, Ye L, Ren H, Zhang XX (2018) Microbial community structure and function in aerobic granular sludge. Appl Microbiol Biotechnol 102:3967–3979. https://doi.org/10.1007/s00253-018-8905-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the Laboratory of Thermodynamics and Supercritical Technology; the Center of Analysis of the Department of Chemical Engineering; and the Central Laboratory of Electronic Microscopy, at the Federal University of Santa Catarina, Florianópolis, SC, Brazil for the characterization analyses.

Funding

This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –Brasil (CAPES) (Finance Code 001) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), in addition to internal funds from the Federal University of Santa Catarina.

Author information

Authors and Affiliations

Authors

Contributions

DCD conceptualization, experimental data, literature research, data analysis, and manuscript first draft; NLJ manuscript conceptualization and critical review; JAX critical review and data analysis; ROH data analysis; RHRC funding acquisition, methodology, project administration, resources, supervision, and critical review. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dayane Gonzaga Domingos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, D.G., Libardi, N., Henriques, R.O. et al. The effect of Np-magnetite on the granulation process of an SBR reactor used for domestic wastewater treatment. Bioprocess Biosyst Eng 44, 161–171 (2021). https://doi.org/10.1007/s00449-020-02432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02432-3

Keywords

Navigation