Skip to main content

Advertisement

Log in

Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil contamination by heavy metals (HM) is a worldwide problem for human health. To reduce risk to human health from exposure to toxic chemicals associated with soil contamination, it is necessary to monitor and assess HM concentrations in the soil for places where the concentration exceeds the acceptable levels. Spatial patterning is a necessary tool for assessment of the exposure risk of HM contamination. Soil sampling (n = 65) was carried out in technogenically polluted soils located at Rostov oblast to study the content and spatial distribution of four HM (Cu, Zn, Pb, and Cr) in the surface layer (0–20 cm) of the impact zone of former Lake Atamanskoe (floodplain of the Seversky Donets River valley, Rostov region) with an area of 3.91 km2. Extremely high values of HM concentrations were found with the maximum values of 702 mg/kg, 72,886 mg/kg, 2300 mg/kg, 259 mg/kg for Cu, Zn, Pb, and Cr, respectively. Inverse distance-weighted (IDW) interpolation was used to prepare 3D monoelement images of HM. Lognormal kriging and indicator kriging techniques were applied to create elemental spatial distribution maps and HM probability maps. The results showed that the total content of Cu, Zn, Pb, and Cr was moderately spatially dependent (nugget-to-sill ratio ranged from 31 to 38%), whereas the contamination index Zc formed strong spatial dependence patterns (nugget-to-sill ratio ranged from 0 to 21.4%). The obtained results of this study could serve as a guide to the authorities in identifying those areas which need remediation. Moreover, this study provides a tool for assessing the hygienic situation in the vicinity of Kamensk-Shakhtinsky (Rostov region) for decision making that can help to minimize the environmental risk of technogenic soil contamination of HM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achilleos, G. A. (2011). The Inverse Distance Weighted interpolation method and error propagation mechanism—creating a DEM from an analogue topographical map. Journal of Spatial Science, 56(2), 283–304. https://doi.org/10.1080/14498596.2011.623348.

    Article  Google Scholar 

  • Akimtsev, V.V., Boldyreva, A.V., Golubev, S.N., Kudryavtsev, M.N., Rudenskaya, K.V., Sadimenko P.A., & Sobornnikova I.G. (1962). The content of microelements in the soils of the Rostov region. In F.Ya. Gavrilyuk (Ed.), Microelements and natural radioactivity of soils (pp. 38–41). Rostov-on-Don: Publishing house of the Rostov State University. (in Russian).

  • Alekseenko, V. A., & Alekseenko, L. P. (2003). Geochemical Barriers. Moscow: Logos. (in Russian).

    Google Scholar 

  • Bauer, T. V., Linnik, V. G., Minkina, T. M., Mandzhieva, S. S., & Nevidomskaya, D. G. (2018). Ecological–geochemical studies of technogenic soils in the flood plain landscapes of the seversky donets, lower Don Basin. Geochemistry International, 56(10), 992–1002. https://doi.org/10.1134/S001670291810004X.

    Article  CAS  Google Scholar 

  • Buttafuoco, G., Tarvainen, T., Jarva, J., & Guagliardi, I. (2016). Spatial variability and trigger values of arsenic in the surface urban soils of the cities of Tampere and Lahti Finland. Environmental Earth Sciences, 75, 896–908. https://doi.org/10.1007/s12665-016-5707-1.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x.

    Article  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (1999). Canadian soil quality guidelines for the protection of environmental and human health: Chromium (total 1997) (VI 1999). In Canadian environmental quality guidelines. Winnipeg: Canadian Council of Ministers of the Environment.http:www//ceqg-rcqe.ccme.ca/download/en/262/. Accessed 5 December 2019.

  • Chu, H. J., Lin, Y. P., Jang, C. S., & Chang, T. K. (2010). Delineating the hazard zone of multiple soil pollutants by multivariate indicator kriging and conditioned Latin hypercube sampling. Geoderma, 158, 242–251. https://doi.org/10.1016/j.geoderma.2010.05.003.

    Article  CAS  Google Scholar 

  • Davenport, P. H., Christopher, T. K., Vardy, S., & Nolan, L. W. (1993). Geochemical mapping in Newfoundland and Labrador: its role in establishing geochemical baselines for the measure of environmental change. Journal of Geochemical Exploration, 49, 177–200. https://doi.org/10.1016/0375-6742(93)90044-M.

    Article  CAS  Google Scholar 

  • Demetriades, A., & Birke, M. (2015). Urban geochemical mapping manual: sampling, sample preparation, laboratory analysis, quality control check, statistical processing and Map plotting. Brussels: EuroGeoSurveys.

    Google Scholar 

  • Demyanov, V. V., & Savelyeva, E. A. (2010). Geostatistics: theory and practice. In R. V. Harutyunyan (Ed.), Institute of Problems of Safe Development of Atomic Energy of the Russian Academy of Sciences. Moscow: Science. (in Russian).

    Google Scholar 

  • Esbensen, K. H., Friis-Petersen, H. H., Petersen, L., Holm-Nielsen, J. B., & Mortensen, P. P. (2007). Representative process sampling—in practice: variographic analysis and estimation of total sampling errors (TSE). Chemometrics and Intelligent Laboratory Systems, 88, 41–59. https://doi.org/10.1016/j.chemolab.2006.09.011.

    Article  CAS  Google Scholar 

  • GN 2.1.7.2041-06. (2006). Maximum allowable concentration (MAC) of chemicals in the soil. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor. (in Russian).

    Google Scholar 

  • GN 2.1.7.2511-09. (2009). Approximately permissible concentrations (APC) of chemical matters in soil. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor. (in Russian).

  • Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.

    Google Scholar 

  • Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89, 1–45. https://doi.org/10.1016/S0016-7061(98)00078-0.

    Article  Google Scholar 

  • Goovaerts, P., Webster, R., & Dubois, J. P. (1997). Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environmental and Ecological Statistics, 4, 49–64. https://doi.org/10.1023/A:1018505924603.

    Article  Google Scholar 

  • GOST (State Standard) 17.4.4.02-84. (2008). Nature protection. Soils. Methods for sampling and preparation of samples for chemical, bacteriological, and helminthological analysis. Moscow: Standardinform. (in Russian).

    Google Scholar 

  • Grunwald, S., Goovaerts, P., Bliss, C. M., Comerford, N. B., & Lamsal, S. (2006). Incorporation of auxiliary information in the geostatistical simulation of soil nitrate nitrogen. Vadose Zone Journal, 5, 391–404. https://doi.org/10.2136/vzj2005.0030.

    Article  CAS  Google Scholar 

  • Guagliardi, I., Cicchella, D., Rosa, R., & Buttafuoco, G. (2015). Assessment of lead pollution in topsoils of a southern Italy area: analysis of urban and peri-urban environment. Journal of Environmental Sciences, 33, 179–187. https://doi.org/10.1016/j.jes.2014.12.025.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control—a sedimentological approach. Water Research, 14, 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran. Iran. Environmental Modeling and Assessment, 176, 677–691. https://doi.org/10.1007/s10661-010-1671-5.

    Article  CAS  Google Scholar 

  • Hengl, T. (2009). A practical guide to geostatistical mapping. Amsterdam: University of Amsterdam.

    Google Scholar 

  • Hiemstra, P. Automatic Interpolation Package. https://www.cran.r-project.org/web/packages/automap/index.html. Accessed 28 January 2020.

  • Hofer, C., Borer, F., Bono, R., Kayser, A., & Papritz, A. (2013). Predicting topsoil heavy metal content of parcels of land: an empirical validation of customary and constrained lognormal block kriging and conditional simulations. Geoderma, 193–194, 200–212. https://doi.org/10.1016/j.geoderma.2012.08.034.

    Article  CAS  Google Scholar 

  • Hofer, C., & Papritz, A. (2010). Predicting threshold exceedance by local block means in soil pollution surveys. Mathematical Geoscience, 42, 631–656. https://doi.org/10.1007/s11004-010-9287-4.

    Article  CAS  Google Scholar 

  • ISO, DIN. (2005). Soil Quality–Determination of pH (ISO 10390: 2005).

  • ISO 13317-2, 2001. Determination of particle size distribution by gravitational liquid sedimentation methods—Part 2: Fixed pipette methodhttps://www.iso.org/standard/30663.html.

  • ISO 14235, 1998. Soil quality—determination of organic carbon by sulfochromic oxidationhttps://www.iso.org/ru/standard/23140.html.

  • Jiang, B., Adebayo, A., Jia, J., Xing, Y., Deng, S., Guo, L., et al. (2019). Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. Journal of Hazardous Materials, 362, 187–195. https://doi.org/10.1016/j.jhazmat.2018.08.060.

    Article  CAS  Google Scholar 

  • Johnson, C. C., & Ander, E. L. (2008). Urban geochemical mapping studies: how and why we do them. Environmental Geochemistry and Health, 30, 511. https://doi.org/10.1007/s10653-008-9189-2.

    Article  CAS  Google Scholar 

  • Journel, A. G. (1980). The lognormal approach to predicting local distributions of selective mining unit grades. Journal of the International Association for Mathematical Geology, 12, 285–303. https://doi.org/10.1007/BF01029417.

    Article  Google Scholar 

  • Journel, A. G. (1983). Nonparametric estimation of spatial distributions. Journal of the International Association for Mathematical Geology, 15, 445–468. https://doi.org/10.1007/BF01031292.

    Article  Google Scholar 

  • Journel, A. G. (1989). Fundamentals of geostatistics in five lessons. Washington D.C.: American Geophysical Union.

    Book  Google Scholar 

  • Juang, K. W., Chen, Y Sh, & Lee, D. Y. (2004). Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127, 229–238. https://doi.org/10.1016/j.envpol.2003.07.001.

    Article  CAS  Google Scholar 

  • Lark, R. M., & Lapworth, D. J. (2012). Quality measures for soil surveys by lognormal kriging. Geoderma, 173–174, 231–240. https://doi.org/10.1016/j.geoderma.2011.12.008.

    Article  Google Scholar 

  • Li, F., Zhang, J., Jiang, W., & Liu, C. (2017). Spatial health risk assessment and hierarchical risk management for mercury in soils from a typical contaminated site, China. Environmental Geochemistry and Health, 39, 929–934. https://doi.org/10.1007/s10653-016-9864-7.

    Article  CAS  Google Scholar 

  • Lin, Y. P., Chang, T. K., Shih, C. W., & Tseng, C. H. (2002). Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environmental Geology, 42, 900–909. https://doi.org/10.1007/s00254-002-0600-5.

    Article  CAS  Google Scholar 

  • Liu, X., Wu, J., & Ji, Xu. (2006). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution, 141, 257–264. https://doi.org/10.1016/j.envpol.2005.08.048.

    Article  CAS  Google Scholar 

  • Lu, Y., Jia, C. M., Zhang, G., Zhao, Y., & Wilson, M. A. (2016). Spatial distribution and source of potential toxic elements (PTEs) in urban soil of Guangzhou. China. Environmental Earth Sciences, 75, 329. https://doi.org/10.1007/s12665-015-5190-0.

    Article  CAS  Google Scholar 

  • Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044–1055.

    Article  Google Scholar 

  • Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., & Brahmis, Z. (2010). Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environmental Pollution, 158, 2294–2301. https://doi.org/10.1016/j.envpol.2010.02.001.

    Article  CAS  Google Scholar 

  • Maliva, RG (2016) Geostatistical Methods and Applications. In R. G. Maliva (Ed.), Aquifer Characterization Techniques (pp. 107–123). New York: Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-319-32137-0_20.

  • Mamyachenkov, S., Anisimova, O., & Egorov, V. (2017). Investigation of viscose rayon manufacturing sludges considered as a raw material for zinc production. KnE Materials Science, 2(2), 182–187.

    Article  Google Scholar 

  • Marchant, B. P., Tye, A. M., & Rawlins, B. G. (2011). The assessment of point-source and diffuse soil metal pollution using robust geostatistical methods: a case study in Swansea (Wales, UK). European Journal of Soil Science, 62, 346–358. https://doi.org/10.1111/j.1365-2389.2011.01373.x.

    Article  CAS  Google Scholar 

  • Perelygin, V.M., Tonkopiy, N.I., Pertsovskaya, A.F., Pavlov, V.N., Grigorieva, T.I., Shestopalova, G.E., Filimonova, E.V., Zyabkina N.B., Perotskaya, A.S., Revich, B.A. et al. (1987). Methodological recommendations for assessment of dangerous soil pollution degree by chemical substances. Moscow: Ministry of Health of Soviet Union (in Russian).

  • Minasny, B., & McBratney, A. B. (2005). The matérn function as a general model for soil variograms. Geoderma, 128, 192–207. https://doi.org/10.1016/j.geoderma.2005.04.003.

    Article  Google Scholar 

  • Minkina, T., Nevidomskaya, D., Bauer, T., Shuvaeva, V., Soldatov, A., Mandzhieva, S., et al. (2018). Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction. Science of the Total Environment, 634, 1165–1173. https://doi.org/10.1016/j.scitotenv.2018.04.118.

    Article  CAS  Google Scholar 

  • Minkina, T. M., Nevidomskaya, D. G., Pol’shina, T. N., Fedorov, Y. A., Mandzhieva, S. S., Chaplygin, V. A., et al. (2017). Heavy metals in the soil-plant system of the don river estuarine region and the taganrog bay coast. Journal of Soils and Sediments, 17, 1474–1491. https://doi.org/10.1007/s11368-016-1381-x.

    Article  Google Scholar 

  • Paul, R., & Cressie, N. (2011). Lognormal block kriging for contaminated soil. European Journal of Soil Science, 62, 337–345. https://doi.org/10.1111/j.1365-2389.2011.01371.x.

    Article  Google Scholar 

  • Piccini, C., Marchetti, A., Farina, R., & Francaviglia, R. (2012). Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds. International Journal of Environmental Research, 6(4), 853–862.

    CAS  Google Scholar 

  • Privalenko, V. V., Mazurenko, V. T., Panaskov, V. I., Moshkin, V. M., Mukhin, N. V., & Senin, B. K. (2000). Ecological problems of the city of Kamensk-Shakhtinsky. Rostov-on-Don: Tsvetnaya pechat. (in Russian).

    Google Scholar 

  • Salminen, R., & Tarvainen, T. (1997). The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. Journal of Geochemical Exploration, 60, 91–98. https://doi.org/10.1016/S0375-6742(97)00028-9.

    Article  CAS  Google Scholar 

  • Santos-Frances, F., Martinez-Grana, A., Zarza, C., Sanchez, G., & Rojo, P. (2017). Spatial distribution of heavy metals and the environmental quality of soil in the northern plateau of spain by geostatistical methods. International Journal of Environmental Research and Public Health, 14, 568. https://doi.org/10.3390/ijerph14060568.

    Article  CAS  Google Scholar 

  • Saet, Y. E., Revich, B. A., Yanin, E. P., Smirnova, R. S., Bashkarevich, I. L., Onishchenko, T. L., et al. (1990). Geochemistry of the environment. Moscow: Nedra. (in Russian).

    Google Scholar 

  • Saito, H., & Goovaerts, P. (2000). Geostatistical interpolation of positively skewed and censored data in a Dioxin-contaminated site. Environmental Science & Technology, 34, 4228–4235. https://doi.org/10.1021/es991450y.

    Article  CAS  Google Scholar 

  • Saito, H., & Goovaerts, P. (2001). Accounting for source location and transport direction into geostatistical prediction of contaminants. Environmental Science & Technology, 35, 4823–4829. https://doi.org/10.1021/es010580f.

    Article  CAS  Google Scholar 

  • Savelyev, A. A., Mukharamova, S. S., Pilyugin, A. G., & Chizhikova, N. A. (2012). Geostatistical data analysis in ecology and nature management (using the R package). Kazan: Kazan University. (in Russian).

    Google Scholar 

  • Shi, J., Wang, H., Xu, J., Wu, J., Liu, X., Zhu, H., et al. (2007). Spatial distribution of heavy metals in soils: A case study of Changxing, China. Environmental Geology, 52, 1–10. https://doi.org/10.1007/s00254-006-0443-6.

    Article  CAS  Google Scholar 

  • Sollitto, D., Romic, M., Castrignanò, A., Romic, D., & Bakic, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (northwest Croatia) using multivariate geostatistics. CATENA, 80, 182–194. https://doi.org/10.1016/j.catena.2009.11.005.

    Article  CAS  Google Scholar 

  • Song, Q., & Li, J. (2015). A review on human health consequences of metals exposure to ewaste in China. Environmental Pollution, 196, 450–461. https://doi.org/10.1016/j.envpol.2014.11.004.

    Article  CAS  Google Scholar 

  • Taati, A., Salehi, M. H., Mohammadi, J., Mohajer, R., & Díez, S. (2020). Pollution assessment and spatial distribution of trace elements in soils of Arak industrial area, Iran: Implications for human health. Environmental Research, 187, 109577.

    Article  CAS  Google Scholar 

  • Tang, Q., Liu, G. J., Zhou, C. C., Zhang, H., & Sun, R. Y. (2013). Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: potential risks to ecology and children's health. Chemosphere, 93, 2473–2479. https://doi.org/10.1016/j.chemosphere.2013.09.015.

    Article  CAS  Google Scholar 

  • Tóth, G., Hermann, T., Szatmári, G., & Pásztor, L. (2016). Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of The Total Environment, 565, 1054–1062. https://doi.org/10.1016/j.scitotenv.2016.05.115.

    Article  CAS  Google Scholar 

  • Tóth, G., Hermann, T., Szatmári, G., & Pásztor, L. (2017). Remarks to the debate on mapping heavy metals in soil and soil monitoring in the European Union. Science of The Total Environment, 603–604, 827–831. https://doi.org/10.1016/j.scitotenv.2017.03.129.

    Article  CAS  Google Scholar 

  • Ungureanu, T., Iancu, G. O., Mitică, P. M., & Chicoș, M. M. (2017). Spatial distribution and geochemistry of heavy metals in soils: A case study from the NE area of Vaslui county Romania. Journal of Geochemical Exploration, 176, 20–32. https://doi.org/10.1016/j.gexplo.2016.08.012.

    Article  CAS  Google Scholar 

  • Vodyanitskii, Y. N. (2010). Equations for assessing the total contamination of soils with heavy metals and metalloids. Eurasian Soil Science, 43(10), 1184–1188.

    Article  Google Scholar 

  • Wang, H., Li, X., Chen, Y., Li, Z., Hedding, D. W., Nel, W., et al. (2020). Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: A case study from Xuyi County, eastern China. Science of The Total Environment, 729, 139058.

    Article  CAS  Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for Environmental Scientists. Chichester: Wiley. https://doi.org/10.1002/9780470517277.

    Book  Google Scholar 

  • Wu, W., Xie, D. T., & Liu, H. B. (2009). Spatial variability of soil heavy metals in the three gorges area: Multivariate and geostatistical analyses. Environmental Monitoring and Assessment, 157, 63–71. https://doi.org/10.1007/s10661-008-0515-z.

    Article  CAS  Google Scholar 

  • Xiang, L., Liu, P.-H., Jiang, X.-F., & Chen, P.-J. (2019). Health risk assessment and spatial distribution characteristics of heavy metal pollution in rice samples from a surrounding hydrometallurgy plant area in No. 721 uranium mining, East China. Journal of Geochemical Exploration, 207, 106360. https://doi.org/10.1016/j.gexplo.2019.106360.

    Article  CAS  Google Scholar 

  • Yamamoto, J. K. (2007). On unbiased backtransform of lognormal kriging estimates. Computational Geosciences, 11, 219–234. https://doi.org/10.1007/s10596-007-9046-x.

    Article  Google Scholar 

  • Yang, Z., Lu, W., Long, Y., Bao, X., & Yang, Q. (2011). Assessment of heavy metals contamination in urban topsoil from Changchun City, China. Journal of Geochemical Exploration, 108, 27–38. https://doi.org/10.1016/j.gexplo.2010.09.006.

    Article  CAS  Google Scholar 

  • Yang, M., Wang, C., Yang, Z.-P., Yan, N., Li, F.-Y., Diao, Y.-W., et al. (2018). Use of portable X-ray fluorescence spectroscopy and geostatistics for health risk assessment. Ecotoxicology and Environmental Safety, 153, 68–77. https://doi.org/10.1016/j.ecoenv.2018.01.050.

    Article  CAS  Google Scholar 

  • Zhang, S., Liu, H., Luo, M., Zhou, X., Lei, M., Huang, Y., et al. (2018). Digital mapping and spatial characteristics analyses of heavy metal content in reclaimed soil of industrial and mining abandoned land. Scientific Reports, 8, 17150. https://doi.org/10.1038/s41598-018-35624-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science and Higher Education of the Russian Federation (no. 0852-2020-0029), the Russian Foundation for Basic Research (grants no.19-34-60041) and budget theme 0137-2019-0008 (GEOKHI RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly G. Linnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnik, V.G., Bauer, T.V., Minkina, T.M. et al. Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environ Geochem Health 44, 319–333 (2022). https://doi.org/10.1007/s10653-020-00688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00688-y

Keywords

Navigation