Skip to main content

Advertisement

Log in

The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common progressive neurodegenerative disorder. A defining hallmark of the AD brain is the presence of intraneuronal neurofibrillary tangles (NFTs) which are made up of abnormally modified tau, with aberrant phosphorylation being the most studied posttranslational modification (PTM). Although the accumulation of tau as NFTs is an invariant feature of the AD brain, it has become evident that these insoluble aggregates are likely not the primary pathogenic form of tau, rather soluble forms of tau with abnormal PTMs are the mediators of toxicity. The most prevalent PTM on tau is phosphorylation, with the abnormal modification of specific residues on tau playing a key role in its toxicity. Even though it is widely accepted that tau with aberrant PTMs facilitates neurodegeneration, the precise cellular mechanisms remain unknown. Nonetheless, there is an evolving conceptual framework that an important contributing factor may be selective pathological tau species compromising mitochondrial biology. Understanding the mechanisms by which tau with site-specific PTM impacts mitochondria is crucial for understanding the role tau plays in AD. Here, we provide a brief introduction to tau and its phosphorylation and function in a physiological context, followed by a discussion of the impact of soluble phosphorylated tau species on neuronal processes in general and mitochondria more specifically. We also discuss how therapeutic strategies that attenuate pathological tau species in combination with treatments that improve mitochondrial biology could be a potential therapeutic avenue to mitigate disease progression in AD and other tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766. https://doi.org/10.1152/physrev.2001.81.2.741

    Article  CAS  PubMed  Google Scholar 

  2. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384. https://doi.org/10.1152/physrev.00024.2003

    Article  CAS  PubMed  Google Scholar 

  3. Neddens J, Temmel M, Flunkert S, Kerschbaumer B, Hoeller C, Loeffler T, Niederkofler V, Daum G et al (2018) Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol Commun 6(1):52. https://doi.org/10.1186/s40478-018-0557-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Irwin DJ, Cohen TJ, Grossman M, Arnold SE, Xie SX, Lee VMY, Trojanowski JQ (2012) Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies. Brain 135(3):807–818. https://doi.org/10.1093/brain/aws013

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mroczko B, Groblewska M, Litman-Zawadzka A (2019) The role of protein misfolding and tau oligomers (TauOs) in Alzheimer’s disease (AD). Int J Mol Sci 20(19). https://doi.org/10.3390/ijms20194661

  6. David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, Ravid R, Drose S et al (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280(25):23802–23814. https://doi.org/10.1074/jbc.M500356200

    Article  CAS  PubMed  Google Scholar 

  7. Oliver DMA, Reddy PH (2019) Molecular basis of Alzheimer’s disease: focus on mitochondria. Journal of Alzheimer’s Disease. https://doi.org/10.3233/JAD-190048

  8. Swerdlow RH (2018) Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimers Dis 62(3):1403–1416. https://doi.org/10.3233/JAD-170585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu H, Tan CC, Tan L, Yu JT (2017) A mitocentric view of Alzheimer’s disease. Mol Neurobiol 54(8):6046–6060. https://doi.org/10.1007/s12035-016-0117-7

    Article  CAS  PubMed  Google Scholar 

  10. Cummins N, Tweedie A, Zuryn S, Bertran-Gonzalez J, Götz J (2019) Disease-associated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria. EMBO J 38(3):e99360. https://doi.org/10.15252/embj.201899360

    Article  CAS  PubMed  Google Scholar 

  11. Perez MJ, Jara C, Quintanilla RA (2018) Contribution of tau pathology to mitochondrial impairment in neurodegeneration. Front Neurosci 12(441). https://doi.org/10.3389/fnins.2018.00441

  12. Butler VJ, Salazar DA, Soriano-Castell D, Alves-Ferreira M, Dennissen FJA, Vohra M, Oses-Prieto JA, Li KH et al (2019) Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Hum Mol Genet 28(9):1498–1514. https://doi.org/10.1093/hmg/ddy442

    Article  CAS  PubMed  Google Scholar 

  13. Chong FP, Ng KY, Koh RY, Chye SM (2018) Tau proteins and tauopathies in Alzheimer’s disease. Cell Mol Neurobiol 38(5):965–980. https://doi.org/10.1007/s10571-017-0574-1

    Article  CAS  PubMed  Google Scholar 

  14. Liu F, Gong CX (2008) Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 3:8. https://doi.org/10.1186/1750-1326-3-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu X-L, Piña-Crespo J, Zhang Y-W, Chen X-C, Xu H-X (2017) Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s disease. Chin Med J 130(24):2978–2990. https://doi.org/10.4103/0366-6999.220313

    Article  PubMed  PubMed Central  Google Scholar 

  16. LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11(4):170–176. https://doi.org/10.1016/j.molmed.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  17. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133(5):665–704. https://doi.org/10.1007/s00401-017-1707-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739(2–3):268–279. https://doi.org/10.1016/j.bbadis.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  19. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2(7):a006247. https://doi.org/10.1101/cshperspect.a006247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Janning D, Igaev M, Sündermann F, Brühmann J, Beutel O, Heinisch JJ, Bakota L, Piehler J et al (2014) Single-molecule tracking of tau reveals fast kiss-and-hop interaction with microtubules in living neurons. Mol Biol Cell 25(22):3541–3551. https://doi.org/10.1091/mbc.E14-06-1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70(3):410–426. https://doi.org/10.1016/j.neuron.2011.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brandt R, Leschik J (2004) Functional interactions of tau and their relevance for Alzheimer’s disease. Curr Alzheimer Res 1(4):255–269. https://doi.org/10.2174/1567205043332054

    Article  CAS  PubMed  Google Scholar 

  23. Trushina NI, Bakota L, Mulkidjanian AY, Brandt R (2019) The evolution of tau phosphorylation and interactions. Front Aging Neurosci 11(256). https://doi.org/10.3389/fnagi.2019.00256

  24. Qiang L, Sun X, Austin TO, Muralidharan H, Jean DC, Liu M, Yu W, Baas PW (2018) Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr Biol 28(13):2181–2189 e2184. https://doi.org/10.1016/j.cub.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  25. Baas PW, Qiang L (2019) Tau: it’s not what you think. Trends Cell Biol 29(6):452–461. https://doi.org/10.1016/j.tcb.2019.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21. https://doi.org/10.1038/nrn.2015.1

    Article  CAS  PubMed  Google Scholar 

  27. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156(6):1051–1063. https://doi.org/10.1083/jcb.200108057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103(1):26–35. https://doi.org/10.1007/s004010100423

    Article  CAS  PubMed  Google Scholar 

  29. Fox LM, William CM, Adamowicz DH, Pitstick R, Carlson GA, Spires-Jones TL, Hyman BT (2011) Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model. J Neuropathol Exp Neurol 70(7):588–595. https://doi.org/10.1097/NEN.0b013e318220a658

    Article  CAS  PubMed  Google Scholar 

  30. Ghag G, Bhatt N, Cantu DV, Guerrero-Munoz MJ, Ellsworth A, Sengupta U, Kayed R (2018) Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. Protein Sci 27(11):1901–1909. https://doi.org/10.1002/pro.3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu P, Smith BR, Montonye ML, Kemper LJ, Leinonen-Wright K, Nelson KM, Higgins L, Guerrero CR et al (2020) A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci Rep 10(1):3869. https://doi.org/10.1038/s41598-020-60777-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heinisch JJ, Brandt R (2016) Signaling pathways and posttranslational modifications of tau in Alzheimer’s disease: the humanization of yeast cells. Microb Cell 3(4):135–146. https://doi.org/10.15698/mic2016.04.489

    Article  PubMed  PubMed Central  Google Scholar 

  33. Min S-W, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, Shirakawa K, Minami SS et al (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21(10):1154–1162. https://doi.org/10.1038/nm.3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tracy TE, Gan L (2017) Acetylated tau in Alzheimer’s disease: an instigator of synaptic dysfunction underlying memory loss: increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy. Bioessays 39(4). https://doi.org/10.1002/bies.201600224

  35. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2(8):871–875. https://doi.org/10.1038/nm0896-871

    Article  CAS  PubMed  Google Scholar 

  36. Cao J, Zhong MB, Toro CA, Zhang L, Cai D (2019) Endo-lysosomal pathway and ubiquitin-proteasome system dysfunction in Alzheimer’s disease pathogenesis. Neurosci Lett 703:68–78. https://doi.org/10.1016/j.neulet.2019.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo HB, Xia YY, Shu XJ, Liu ZC, Feng Y, Liu XH, Yu G, Yin G et al (2014) SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci U S A 111(46):16586–16591. https://doi.org/10.1073/pnas.1417548111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kontaxi C, Piccardo P, Gill AC (2017) Lysine-directed post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Front Mol Biosci 4(56). https://doi.org/10.3389/fmolb.2017.00056

  39. Park SY, Tournell C, Sinjoanu RC, Ferreira A (2007) Caspase-3- and calpain-mediated tau cleavage are differentially prevented by estrogen and testosterone in beta-amyloid-treated hippocampal neurons. Neuroscience 144(1):119–127. https://doi.org/10.1016/j.neuroscience.2006.09.012

    Article  CAS  PubMed  Google Scholar 

  40. Ferreira A, Bigio EH (2011) Calpain-mediated tau cleavage: a mechanism leading to neurodegeneration shared by multiple tauopathies. Mol Med 17(7–8):676–685. https://doi.org/10.2119/molmed.2010.00220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L et al (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6(1):6. https://doi.org/10.3390/biom6010006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mi K, Johnson GV (2006) The role of tau phosphorylation in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 3(5):449–463. https://doi.org/10.2174/156720506779025279

    Article  CAS  PubMed  Google Scholar 

  43. Ochalek A, Mihalik B, Avci HX, Chandrasekaran A, Teglasi A, Bock I, Giudice ML, Tancos Z et al (2017) Neurons derived from sporadic Alzheimer’s disease iPSCs reveal elevated TAU hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimers Res Ther 9(1):90. https://doi.org/10.1186/s13195-017-0317-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quintanilla RA, von Bernhardi R, Godoy JA, Inestrosa NC, Johnson GV (2014) Phosphorylated tau potentiates Abeta-induced mitochondrial damage in mature neurons. Neurobiol Dis 71:260–269. https://doi.org/10.1016/j.nbd.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Zhou Z, Zhang L, Xu S, Chen C, Yu Z (2014) The cellular distribution and Ser262 phosphorylation of tau protein are regulated by BDNF in vitro. PLoS One 9(3):e91793. https://doi.org/10.1371/journal.pone.0091793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zempel H, Dennissen FJA, Kumar Y, Luedtke J, Biernat J, Mandelkow EM, Mandelkow E (2017) Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem 292(29):12192–12207. https://doi.org/10.1074/jbc.M117.784702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA et al (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6):1067–1081. https://doi.org/10.1016/j.neuron.2010.11.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Niewidok B, Igaev M, Sündermann F, Janning D, Bakota L, Brandt R (2016) Presence of a carboxy-terminal pseudorepeat and disease-like pseudohyperphosphorylation critically influence tau's interaction with microtubules in axon-like processes. Mol Biol Cell 27(22):3537–3549. https://doi.org/10.1091/mbc.E16-06-0402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A, Przybyla M, Bi M et al (2016) Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice. Science 354(6314):904–908. https://doi.org/10.1126/science.aah6205

    Article  CAS  PubMed  Google Scholar 

  50. Strang KH, Sorrentino ZA, Riffe CJ, Gorion KM, Vijayaraghavan N, Golde TE, Giasson BI (2019) Phosphorylation of serine 305 in tau inhibits aggregation. Neurosci Lett 692:187–192. https://doi.org/10.1016/j.neulet.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  51. Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA et al (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 282(32):23645–23654. https://doi.org/10.1074/jbc.M703269200

    Article  CAS  PubMed  Google Scholar 

  52. Espinoza M, de Silva R, Dickson DW, Davies P (2008) Differential incorporation of tau isoforms in Alzheimer’s disease. J Alzheimers Dis 14(1):1–16. https://doi.org/10.3233/jad-2008-14101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reddy PH, Oliver DM (2019) Amyloid beta and phosphorylated Tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 8(5). https://doi.org/10.3390/cells8050488

  54. Albensi BC (2019) Dysfunction of mitochondria: implications for Alzheimer’s disease. Int Rev Neurobiol 145:13–27. https://doi.org/10.1016/bs.irn.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  55. Roger AJ, Munoz-Gomez SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27(21):R1177–R1192. https://doi.org/10.1016/j.cub.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  56. Lin Y-F, Schulz AM, Pellegrino MW, Lu Y, Shaham S, Haynes CM (2016) Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial unfolded protein response. Nature 533(7603):416–419. https://doi.org/10.1038/nature17989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Flannery PJ, Trushina E (2019) Mitochondrial dynamics and transport in Alzheimer’s disease. Mol Cell Neurosci 98:109–120. https://doi.org/10.1016/j.mcn.2019.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bakota L, Ussif A, Jeserich G, Brandt R (2017) Systemic and network functions of the microtubule-associated protein tau: implications for tau-based therapies. Mol Cell Neurosci 84:132–141. https://doi.org/10.1016/j.mcn.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  59. Onukwufor JO, Berry BJ, Wojtovich AP (2019) Physiologic implications of reactive oxygen species production by mitochondrial complex I reverse electron transport. Antioxidants (Basel) 8(8). https://doi.org/10.3390/antiox8080285

  60. Chan SHH, Chan JYH (2017) Mitochondria and reactive oxygen species contribute to neurogenic hypertension. Physiology (Bethesda) 32(4):308–321. https://doi.org/10.1152/physiol.00006.2017

    Article  CAS  Google Scholar 

  61. Dan Dunn J, Alvarez LA, Zhang X, Soldati T (2015) Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol 6:472–485. https://doi.org/10.1016/j.redox.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lambert AJ, Brand MD (2009) Reactive oxygen species production by mitochondria. Methods Mol Biol 554:165–181. https://doi.org/10.1007/978-1-59745-521-3_11

    Article  CAS  PubMed  Google Scholar 

  63. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. https://doi.org/10.1016/j.neuron.2008.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li XC, Hu Y, Wang ZH, Luo Y, Zhang Y, Liu XP, Feng Q, Wang Q et al (2016) Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins. Sci Rep 6:24756. https://doi.org/10.1038/srep24756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Esteras N, Rohrer JD, Hardy J, Wray S, Abramov AY (2017) Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration. Redox Biol 12:410–422. https://doi.org/10.1016/j.redox.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Scott I, Youle RJ (2010) Mitochondrial fission and fusion. Essays Biochem 47:85–98. https://doi.org/10.1042/bse0470085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5(6). https://doi.org/10.1101/cshperspect.a011072

  68. Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso Adel C (2014) Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 30(2):346–358. https://doi.org/10.1007/s12264-013-1414-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dikov D, Reichert AS (2011) How to split up: lessons from mitochondria. EMBO J 30(14):2751–2753. https://doi.org/10.1038/emboj.2011.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Manczak M, Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer’s disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21(11):2538–2547. https://doi.org/10.1093/hmg/dds072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kandimalla R, Manczak M, Fry D, Suneetha Y, Sesaki H, Reddy PH (2016) Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer’s disease. Hum Mol Genet 25(22):4881–4897. https://doi.org/10.1093/hmg/ddw312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oliver D, Reddy PH (2019) Dynamics of dynamin-related protein 1 in Alzheimer’s disease and other neurodegenerative diseases. Cells 8(9). https://doi.org/10.3390/cells8090961

  73. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM et al (2019) Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22(3):401–412. https://doi.org/10.1038/s41593-018-0332-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362. https://doi.org/10.1126/science.1207385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cieri D, Vicario M, Vallese F, D'Orsi B, Berto P, Grinzato A, Catoni C, De Stefani D et al (2018) Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca(2+) handling. Biochim Biophys Acta Mol basis Dis 1864(10):3247–3256. https://doi.org/10.1016/j.bbadis.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  76. Gauthier-Kemper A, Suárez Alonso M, Sündermann F, Niewidok B, Fernandez MP, Bakota L, Heinisch JJ, Brandt R (2018) Annexins A2 and A6 interact with the extreme N terminus of tau and thereby contribute to tau's axonal localization. J Biol Chem 293(21):8065–8076. https://doi.org/10.1074/jbc.RA117.000490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gauthier-Kemper A, Weissmann C, Golovyashkina N, Sebö-Lemke Z, Drewes G, Gerke V, Heinisch JJ, Brandt R (2011) The frontotemporal dementia mutation R406W blocks tau's interaction with the membrane in an annexin A2-dependent manner. J Cell Biol 192(4):647–661. https://doi.org/10.1083/jcb.201007161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12(6):609–622. https://doi.org/10.1016/s1474-4422(13)70090-5

    Article  CAS  PubMed  Google Scholar 

  79. DuBoff B, Gotz J, Feany MB (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75(4):618–632. https://doi.org/10.1016/j.neuron.2012.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173(2):470–482. https://doi.org/10.2353/ajpath.2008.071208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. DuBoff B, Feany M, Gotz J (2013) Why size matters - balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci 36(6):325–335. https://doi.org/10.1016/j.tins.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  82. Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130(4):671–681. https://doi.org/10.1242/jcs.171017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Byrne JJ, Soh MS, Chandhok G, Vijayaraghavan T, Teoh JS, Crawford S, Cobham AE, Yapa NMB et al (2019) Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cell Mol Life Sci 76(10):1967–1985. https://doi.org/10.1007/s00018-019-03024-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20(9):1013–1022. https://doi.org/10.1038/s41556-018-0176-2

    Article  CAS  PubMed  Google Scholar 

  85. Wei H, Liu L, Chen Q (2015) Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim Biophys Acta 1853(10 Pt B):2784–2790. https://doi.org/10.1016/j.bbamcr.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  86. Audano M, Schneider A, Mitro N (2018) Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration. J Neurochem 147(3):291–309. https://doi.org/10.1111/jnc.14471

    Article  CAS  PubMed  Google Scholar 

  87. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, Sideris DP, Fogel AI et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yamaguchi O, Murakawa T, Nishida K, Otsu K (2016) Receptor-mediated mitophagy. J Mol Cell Cardiol 95:50–56. https://doi.org/10.1016/j.yjmcc.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  89. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF (2017) Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 40(3):151–166. https://doi.org/10.1016/j.tins.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24(7):787–795. https://doi.org/10.1038/cr.2014.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Suzuki H, Kerr R, Bianchi L, Frokjaer-Jensen C, Slone D, Xue J, Gerstbrein B, Driscoll M et al (2003) In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39(6):1005–1017. https://doi.org/10.1016/j.neuron.2003.08.015

    Article  CAS  PubMed  Google Scholar 

  92. Guha S, Fischer S, Johnson GV, Nehrke K (2020) Alzheimer’s disease-relevant tau modifications selectively impact neurodegeneration and mitophagy in a novel <em>C. elegans</em> single-copy transgenic model. bioRxiv:2020.2002.2012.946004. https://doi.org/10.1101/2020.02.12.946004

  93. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5(6). https://doi.org/10.1101/cshperspect.a011304

  94. Stowers RS, Megeath LJ, Górska-Andrzejak J, Meinertzhagen IA, Schwarz TL (2002) Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36(6):1063–1077. https://doi.org/10.1016/s0896-6273(02)01094-2

    Article  CAS  PubMed  Google Scholar 

  95. Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Marin L, Charlton MP et al (2005) The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47(3):379–393. https://doi.org/10.1016/j.neuron.2005.06.027

    Article  CAS  PubMed  Google Scholar 

  96. Fransson S, Ruusala A, Aspenstrom P (2006) The atypical rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344(2):500–510. https://doi.org/10.1016/j.bbrc.2006.03.163

    Article  CAS  PubMed  Google Scholar 

  97. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13. https://doi.org/10.1186/1750-1326-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shahpasand K, Uemura I, Saito T, Asano T, Hata K, Shibata K, Toyoshima Y, Hasegawa M et al (2012) Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer’s disease. J Neurosci 32(7):2430–2441. https://doi.org/10.1523/JNEUROSCI.5927-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iijima-Ando K, Sekiya M, Maruko-Otake A, Ohtake Y, Suzuki E, Lu B, Iijima KM (2012) Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer’s disease-related tau phosphorylation via PAR-1. PLoS Genet 8(8):e1002918. https://doi.org/10.1371/journal.pgen.1002918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fatouros C, Pir GJ, Biernat J, Koushika SP, Mandelkow E, Mandelkow EM, Schmidt E, Baumeister R (2012) Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum Mol Genet 21(16):3587–3603. https://doi.org/10.1093/hmg/dds190

    Article  CAS  PubMed  Google Scholar 

  101. Schulz KL, Eckert A, Rhein V, Mai S, Haase W, Reichert AS, Jendrach M, Muller WE et al (2012) A new link to mitochondrial impairment in tauopathies. Mol Neurobiol 46(1):205–216. https://doi.org/10.1007/s12035-012-8308-3

    Article  CAS  PubMed  Google Scholar 

  102. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481. https://doi.org/10.1126/science.1113694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP et al (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 179(4):2071–2082. https://doi.org/10.1016/j.ajpath.2011.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rodriguez-Martin T, Pooler AM, Lau DHW, Morotz GM, De Vos KJ, Gilley J, Coleman MP, Hanger DP (2016) Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons. Neurobiol Dis 85:1–10. https://doi.org/10.1016/j.nbd.2015.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Eckert A, Nisbet R, Grimm A, Gotz J (2014) March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842(8):1258–1266. https://doi.org/10.1016/j.bbadis.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  106. Kosmidis S, Grammenoudi S, Papanikolopoulou K, Skoulakis EMC (2010) Differential effects of tau on the integrity and function of neurons essential for learning in Drosophila. J Neurosci 30(2):464–477. https://doi.org/10.1523/jneurosci.1490-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Maeda S, Djukic B, Taneja P, Yu G-Q, Lo I, Davis A, Craft R, Guo W et al (2016) Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep 17(4):530–551. https://doi.org/10.15252/embr.201541438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cabezas-Opazo FA, Vergara-Pulgar K, Perez MJ, Jara C, Osorio-Fuentealba C, Quintanilla RA (2015) Mitochondrial dysfunction contributes to the pathogenesis of Alzheimer’s disease. Oxidative Med Cell Longev 2015(509654). https://doi.org/10.1155/2015/509654

  109. Coughlin D, Irwin DJ (2017) Emerging diagnostic and therapeutic strategies for Tauopathies. Curr Neurol Neurosci Rep 17(9):72. https://doi.org/10.1007/s11910-017-0779-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yoshiyama Y, Lee VM, Trojanowski JQ (2013) Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry 84(7):784–795. https://doi.org/10.1136/jnnp-2012-303144

    Article  PubMed  Google Scholar 

  111. Paul P, Iyer S, Nadella RK, Nayak R, Chellappa AS, Ambardar S, Sud R, Sukumaran SK et al (2020) Lithium response in bipolar disorder correlates with improved cell viability of patient derived cell lines. Sci Rep 10(1):7428. https://doi.org/10.1038/s41598-020-64202-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Engel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99(6):1445–1455. https://doi.org/10.1111/j.1471-4159.2006.04139.x

    Article  CAS  PubMed  Google Scholar 

  113. Wilson EN, Do Carmo S, Welikovitch LA, Hall H, Aguilar LF, Foret MK, Iulita MF, Jia DT et al (2020) NP03, a microdose lithium formulation, blunts early amyloid post-plaque neuropathology in McGill-R-Thy1-APP Alzheimer-like transgenic rats. J Alzheimers Dis 73(2):723–739. https://doi.org/10.3233/JAD-190862

    Article  PubMed  Google Scholar 

  114. Pouladi MA, Brillaud E, Xie Y, Conforti P, Graham RK, Ehrnhoefer DE, Franciosi S, Zhang W et al (2012) NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease. Neurobiol Dis 48(3):282–289. https://doi.org/10.1016/j.nbd.2012.06.026

    Article  CAS  PubMed  Google Scholar 

  115. Mouri A, Legrand P, El Ghzaoui A, Dorandeu C, Maurel JC, Devoisselle JM (2016) Formulation, physicochemical characterization and stability study of lithium-loaded microemulsion system. Int J Pharm 502(1–2):117–124. https://doi.org/10.1016/j.ijpharm.2016.01.072

    Article  CAS  PubMed  Google Scholar 

  116. Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF (2011) Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 198(5):351–356. https://doi.org/10.1192/bjp.bp.110.080044

    Article  PubMed  Google Scholar 

  117. Pradeepkiran JA, Reddy PH (2019) Structure based design and molecular docking studies for phosphorylated tau inhibitors in Alzheimer’s disease. Cells 8(3). https://doi.org/10.3390/cells8030260

  118. Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328. https://doi.org/10.2174/092986708785909111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Voronkov M, Braithwaite SP, Stock JB (2011) Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer’s disease. Future Med Chem 3(7):821–833. https://doi.org/10.4155/fmc.11.47

    Article  CAS  PubMed  Google Scholar 

  120. Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Yu JW, Strack S et al (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127(6):1239–1251. https://doi.org/10.1016/j.cell.2006.11.033

    Article  CAS  PubMed  Google Scholar 

  121. Kishi T, Matsunaga S, Oya K, Nomura I, Ikuta T, Iwata N (2017) Memantine for Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimers Dis 60(2):401–425. https://doi.org/10.3233/jad-170424

    Article  CAS  PubMed  Google Scholar 

  122. Li L, Sengupta A, Haque N, Grundke-Iqbal I, Iqbal K (2004) Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. FEBS Lett 566(1–3):261–269. https://doi.org/10.1016/j.febslet.2004.04.047

    Article  CAS  PubMed  Google Scholar 

  123. Corcoran NM, Martin D, Hutter-Paier B, Windisch M, Nguyen T, Nheu L, Sundstrom LE, Costello AJ et al (2010) Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 17(8):1025–1033. https://doi.org/10.1016/j.jocn.2010.04.020

    Article  CAS  PubMed  Google Scholar 

  124. van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ, Gotz J, Ittner LM (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci U S A 107(31):13888–13893. https://doi.org/10.1073/pnas.1009038107

    Article  PubMed  PubMed Central  Google Scholar 

  125. Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12(1):15–27. https://doi.org/10.1038/nrneurol.2015.225

    Article  CAS  PubMed  Google Scholar 

  126. Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y, Rao Y (2019) PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 4:64. https://doi.org/10.1038/s41392-019-0101-6

    Article  PubMed  PubMed Central  Google Scholar 

  127. Silva MC, Ferguson FM, Cai Q, Donovan KA, Nandi G, Patnaik D, Zhang T, Huang HT et al (2019) Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife 8. https://doi.org/10.7554/eLife.45457

  128. Kargbo RB (2019) Treatment of Alzheimer’s by PROTAC-tau protein degradation. ACS Med Chem Lett 10(5):699–700. https://doi.org/10.1021/acsmedchemlett.9b00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dai CL, Tung YC, Liu F, Gong CX, Iqbal K (2017) Tau passive immunization inhibits not only tau but also Abeta pathology. Alzheimers Res Ther 9(1):1. https://doi.org/10.1186/s13195-016-0227-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Zecca C, Barulli MR et al (2016) Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. Biomed Res Int 2016(3245935). https://doi.org/10.1155/2016/3245935

  131. Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126(Pt 3):789–802. https://doi.org/10.1242/jcs.114439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang W, Yin J, Ma X, Zhao F, Siedlak SL, Wang Z, Torres S, Fujioka H et al (2017) Inhibition of mitochondrial fragmentation protects against Alzheimer’s disease in rodent model. Hum Mol Genet 26(21):4118–4131. https://doi.org/10.1093/hmg/ddx299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Manczak M, Kandimalla R, Yin X, Reddy PH (2019) Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet 28(2):177–199. https://doi.org/10.1093/hmg/ddy335

    Article  CAS  PubMed  Google Scholar 

  134. Wu Q, Xia SX, Li QQ, Gao Y, Shen X, Ma L, Zhang MY, Wang T et al (2016) Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury. Brain Res 1630:134–143. https://doi.org/10.1016/j.brainres.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  135. Smith G, Gallo G (2017) To mdivi-1 or not to mdivi-1: Is that the question? Dev Neurobiol 77(11):1260–1268. https://doi.org/10.1002/dneu.22519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lin J, Zhuge J, Zheng X, Wu Y, Zhang Z, Xu T, Meftah Z, Xu H et al (2020) Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radic Biol Med 150:109–119. https://doi.org/10.1016/j.freeradbiomed.2020.02.024

    Article  CAS  PubMed  Google Scholar 

  137. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, Lu J, Fischer A (2013) Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med 5(1):52–63. https://doi.org/10.1002/emmm.201201923

    Article  CAS  PubMed  Google Scholar 

  138. Chen S, Owens GC, Makarenkova H, Edelman DB (2010) HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 5(5):e10848. https://doi.org/10.1371/journal.pone.0010848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Calkins MJ, Manczak M, Reddy PH (2012) Mitochondria-targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s disease. Pharmaceuticals (Basel) 5(10):1103–1119. https://doi.org/10.3390/ph5101103

    Article  CAS  Google Scholar 

  140. Feniouk BA, Skulachev VP (2017) Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants. Curr Aging Sci 10(1):41–48. https://doi.org/10.2174/1874609809666160921113706

    Article  CAS  PubMed  Google Scholar 

  141. Machiraju P, Wang X, Sabouny R, Huang J, Zhao T, Iqbal F, King M, Prasher D et al (2019) SS-31 peptide reverses the mitochondrial fragmentation present in fibroblasts from patients with DCMA, a mitochondrial cardiomyopathy. Front Cardiovasc Med 6:167. https://doi.org/10.3389/fcvm.2019.00167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chavez JD, Tang X, Campbell MD, Reyes G, Kramer PA, Stuppard R, Keller A, Marcinek DJ et al (2019) Mitochondrial protein interaction landscape of SS-31. bioRxiv:739128. https://doi.org/10.1101/739128

  143. Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120(3):419–429. https://doi.org/10.1111/j.1471-4159.2011.07581.x

    Article  CAS  PubMed  Google Scholar 

  144. Kanninen K, Malm TM, Jyrkkanen HK, Goldsteins G, Keksa-Goldsteine V, Tanila H, Yamamoto M, Yla-Herttuala S et al (2008) Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci 39(3):302–313. https://doi.org/10.1016/j.mcn.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  145. Kanninen K, Heikkinen R, Malm T, Rolova T, Kuhmonen S, Leinonen H, Ylä-Herttuala S, Tanila H et al (2009) Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 106(38):16505–16510. https://doi.org/10.1073/pnas.0908397106

    Article  PubMed  PubMed Central  Google Scholar 

  146. Vomhof-Dekrey EE, Picklo MJ Sr (2012) The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. J Nutr Biochem 23(10):1201–1206. https://doi.org/10.1016/j.jnutbio.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  147. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496. https://doi.org/10.1038/ncomms4496

    Article  CAS  PubMed  Google Scholar 

  148. Ren P, Chen J, Li B, Zhang M, Yang B, Guo X, Chen Z, Cheng H et al (2020) Nrf2 ablation promotes Alzheimer’s disease-like pathology in APP/PS1 transgenic mice: the role of neuroinflammation and oxidative stress. Oxidative Med Cell Longev 2020:3050971. https://doi.org/10.1155/2020/3050971

    Article  Google Scholar 

  149. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P (2018) The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 28(3):337–352. https://doi.org/10.1016/j.cmet.2018.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bavarsad Shahripour R, Harrigan MR, Alexandrov AV (2014) N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav 4(2):108–122. https://doi.org/10.1002/brb3.208

    Article  PubMed  PubMed Central  Google Scholar 

  151. Murphy MP, Hartley RC (2018) Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov 17(12):865–886. https://doi.org/10.1038/nrd.2018.174

    Article  CAS  PubMed  Google Scholar 

  152. Young ML, Franklin JL (2019) The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol Cell Neurosci 101:103409. https://doi.org/10.1016/j.mcn.2019.103409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, Woodward KA, Chonchol M et al (2018) Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71(6):1056–1063. https://doi.org/10.1161/HYPERTENSIONAHA.117.10787

    Article  CAS  PubMed  Google Scholar 

  154. Li G, Gong J, Lei H, Liu J, Xu XZ (2016) Promotion of behavior and neuronal function by reactive oxygen species in C. elegans. Nat Commun 7:13234. https://doi.org/10.1038/ncomms13234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wei Y, Kenyon C (2016) Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. Proc Natl Acad Sci U S A 113(20):E2832–E2841. https://doi.org/10.1073/pnas.1524727113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Oswald MC, Brooks PS, Zwart MF, Mukherjee A, West RJ, Giachello CN, Morarach K, Baines RA et al (2018) Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila. Elife 7. https://doi.org/10.7554/eLife.39393

  157. Oswald MCW, Garnham N, Sweeney ST, Landgraf M (2018) Regulation of neuronal development and function by ROS. FEBS Lett 592(5):679–691. https://doi.org/10.1002/1873-3468.12972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the members of the Mitochondrial Research and Interest Group at the University of Rochester Medical Center for their valuable suggestions and helpful discussions. The authors would like to acknowledge Bio-render for providing an online paid subscription platform (BioRender.com) to create all the figures.

Funding

This work was supported by NIH (R21AG060627 and R01AG067617) (GJ and KN).

Author information

Authors and Affiliations

Authors

Contributions

SG wrote the paper, made the figures, and reviewed all the cited articles. GJ and KN helped in writing the paper and critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sanjib Guha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha, S., Johnson, G.V.W. & Nehrke, K. The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer’s Disease. Mol Neurobiol 57, 5103–5120 (2020). https://doi.org/10.1007/s12035-020-02084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02084-0

Keywords

Navigation