Skip to main content

Advertisement

Log in

Recent developments in mass spectrometry for the characterization of micro- and nanoscale plastic debris in the environment

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Development of analytical methods for the characterization (particle size determination, identification, and quantification) of the micro- and nanoscale plastic debris in the environment is a quickly emerging field and has gained considerable attention, not only within the scientific community, but also on the part of policy makers and the general public. In this Trends paper, the importance of developing and further improving analytical methodologies for the detection and characterization of sub-20-μm-range microplastics and especially nanoplastics is highlighted. A short overview of analytical methodologies showing considerable promise for the detection and characterization of such micro- and nanoscale plastic debris is provided, with emphasis on recent developments in mass spectrometry (MS)–based analytical methods. Novel hyphenated techniques combining the strengths of different analytical methods, such as field flow fractionation and MS-based detection, may be a way to adequately address the smallest fractions in plastic debris analysis, making such approaches worthwhile to be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

(sp)-ICP-MS:

(Single-particle) inductively coupled plasma-mass spectrometry

μRaman:

Raman microspectroscopy

AFM:

Atomic force microscopy

CE:

Capillary electrophoresis

DLS:

Dynamic light scattering

FTIR:

Fourier-transform infrared spectroscopy

HDC:

Hydrodynamic chromatography

MALDI-TOF-MS :

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MALS:

Multi-angle light scattering

MPs:

Microplastics

NPs:

Nanoplastics

NTA:

Nanoparticle tracking analysis

PA:

Polyamide

PE:

Polyethylene

PET:

Polyethylene terephthalate

PP:

Polypropylene

PS:

Polystyrene

PVC:

Polyvinyl chloride

Pyr-GC-MS:

Pyrolysis-gas chromatography mass spectrometry

SEC:

Size exclusion chromatography

STM:

Scanning tunneling microscopy

TD-PTR-(TOF)-MS:

Thermal desorption–proton transfer reaction time-of-flight mass spectrometry

References

  1. Cole M, Galloway TS. Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environ Sci Technol. 2015;49(24):14625–32. https://doi.org/10.1021/acs.est.5b04099.

    Article  PubMed  CAS  Google Scholar 

  2. Pinto da Costa J, Paço A, Santos PSM, Duarte AC, Rocha-Santos T. Microplastics in soils: assessment, analytics and risks. Environ Chem. 2019;16:18–30. https://doi.org/10.1071/EN18150.

    Article  CAS  Google Scholar 

  3. Gillibert R, Balakrishnan G, Deshoules Q, Tardivel M, Magazzù A, Donato MG, et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ Sci Technol. 2019;53(15):9003–13. https://doi.org/10.1021/acs.est.9b03105.

    Article  PubMed  CAS  Google Scholar 

  4. González-Pleiter M, Tamayo-Belda M, Pulido-Reyes G, Amariei G, Leganés F, Rosal R, et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ Sci Nano. 2019;6:1382–92. https://doi.org/10.1039/C8EN01427B.

    Article  Google Scholar 

  5. Schwaferts C, Niessner R, Elsner M, Ivleva NP. Methods for the analysis of submicrometer- and nanoplastic particles in the environment. Trends Anal Chem. 2019;112:52–65. https://doi.org/10.1016/j.trac.2018.12.014.

    Article  CAS  Google Scholar 

  6. Zarfl C. Promising techniques and open challenges for microplastic identification and quantification in environmental matrices. Anal Bioanal Chem. 2019;411:3743–56. https://doi.org/10.1007/s00216-019-01763-9.

    Article  PubMed  CAS  Google Scholar 

  7. Prata JC, da Costa JP, Duarte AC, Rocha-Santos T. Methods for sampling and detection of microplastics in water and sediment: a critical review. Trends Anal Chem. 2019;110:150–9. https://doi.org/10.1016/j.trac.2018.10.029.

    Article  CAS  Google Scholar 

  8. Silva AB, Bastos AS, Justino CIL, da Costa JP, Duarte AC, Rocha-Santos TAP. Microplastics in the environment: challenges in analytical chemistry - a review. Anal Chim Acta. 2018;1017:1–19. https://doi.org/10.1016/j.aca.2018.02.043.

    Article  PubMed  CAS  Google Scholar 

  9. Oliveira M, Almeida M. The why and how of micro(nano)plastic research. Trends Anal Chem. 2019;114:196–201. https://doi.org/10.1016/j.trac.2019.02.023.

    Article  CAS  Google Scholar 

  10. EC, Commission recommendation of 18 October 2011 on the definition of nanomaterial (text with EEA relevance) (2011/696/EU), Off J Eur Union (2011) 275/38–275/40.

  11. Gigault J, ter Halle A, Baudrimont M, Pascal P-Y, Gauffre F, Phi T-L, et al. Current opinion: what is a nanoplastic? Environ Pollut. 2018;235:1030–4. https://doi.org/10.1016/j.envpol.2018.01.024.

    Article  PubMed  CAS  Google Scholar 

  12. Hüffer T, Praetorius A, Wagner S, von der Kammer F, Hofmann T. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environ Sci Technol. 2017;51(5):2499–507. https://doi.org/10.1021/acs.est.6b04054.

    Article  PubMed  CAS  Google Scholar 

  13. Möller JN, Löder MGJ, Laforsch C. Finding microplastics in soils: a review of analytical methods. Environ Sci Technol. 2020;54(4):2078–90. https://doi.org/10.1021/acs.est.9b04618.

    Article  PubMed  CAS  Google Scholar 

  14. Ter Halle A, Jeanneau L, Martignac M, et al. Nanoplastic in the North Atlantic Subtropical Gyre. Environ Sci Technol. 2017;51(23):13689–97. https://doi.org/10.1021/acs.est.7b03667.

    Article  PubMed  CAS  Google Scholar 

  15. Velzeboer I, Kwadijk CJ, Koelmans AA. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ Sci Technol. 2014;48(9):4869–76. https://doi.org/10.1021/es405721v.

    Article  PubMed  CAS  Google Scholar 

  16. Wagner S, Reemtsma T. Things we know and don't know about nanoplastic in the environment. Nat Nanotechnol. 2019;14(4):300–1. https://doi.org/10.1038/s41565-019-0424-z.

    Article  PubMed  CAS  Google Scholar 

  17. Fu W, Min J, Jiang W, Li Y, Zhang W. Separation, characterization and identification of microplastics and nanoplastics in the environment. Sci Total Environ. 2020;721:137561. https://doi.org/10.1016/j.scitotenv.2020.137561.

    Article  PubMed  CAS  Google Scholar 

  18. Correia M, Loeschner K. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations. Anal Bioanal Chem. 2018;410:5603–15. https://doi.org/10.1007/s00216-018-0919-8.

    Article  PubMed  CAS  Google Scholar 

  19. Lusher AL, Welden NA, Sobral P, Cole M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal Methods. 2017;9(9):1346–60. https://doi.org/10.1039/c6ay02415g.

    Article  Google Scholar 

  20. Nuelle M-T, Dekiff JH, Remy D, Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut. 2014;184:161–9. https://doi.org/10.1016/j.envpol.2013.07.027.

    Article  PubMed  CAS  Google Scholar 

  21. Materić D, Kasper-Giebl A, Kau D, Anten M, Greilinger M, Ludewig E, et al. Micro- and nanoplastics in Alpine snow: a new method for chemical identification and (semi)quantification in the nanogram range. Environ Sci Technol. 2020;54(4):2353–9. https://doi.org/10.1021/acs.est.9b07540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Montaño MD, Olesik JW, Barber AG, Challis G, Ranville JF. Single particle ICP-MS: advances toward routine analysis of nanomaterials. Anal Bioanal Chem. 2016;408:5053–74. https://doi.org/10.1007/s00216-016-9676-8.

    Article  PubMed  CAS  Google Scholar 

  23. Bolea Fernandez E, Rua-Ibarz A, Velimirovic M, Tirez K, Vanhaecke F. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode. J Anal At Spectrom. 2020;35:455–60. https://doi.org/10.1039/C9JA00379G.

    Article  CAS  Google Scholar 

  24. Sullivan GL, Gallardo JD, Jones EW, Hollliman PJ, Watson TM, Sarp S. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF). Chemosphere. 2020;249:126179. https://doi.org/10.1016/j.chemosphere.2020.126179.

    Article  PubMed  CAS  Google Scholar 

  25. Materić D, Peacock M, Kent M, Cook S, Gauci V, Röckmann T, et al. Characterisation of the semi-volatile component of dissolved organic matter by thermal desorption - proton transfer reaction - mass spectrometry. Sci Rep. 2017;7(1):15936. https://doi.org/10.1038/s41598-017-16256-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lin Y, Huang X, Liu Q, Lin Z, Jiang G. Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media. Talanta. 2020;208:120478. https://doi.org/10.1016/j.talanta.2019.120478.

    Article  PubMed  CAS  Google Scholar 

  27. Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, Cassone AL, et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal Bioanal Chem. 2018;410(25):6663–76. https://doi.org/10.1007/s00216-018-1279-0.

    Article  PubMed  CAS  Google Scholar 

  28. Dehaut A, Cassone AL, Frère L, Hermabessiere L, Himber C, Rinnert E, et al. Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ Pollut. 2016;215:223–33. https://doi.org/10.1016/j.envpol.2016.05.018.

    Article  PubMed  CAS  Google Scholar 

  29. Fischer M, Scholz-Bottcher BM. Microplastics analysis in environmental samples - recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass-related data. Anal Methods. 2019;11:2489–97. https://doi.org/10.1039/C9AY00600A.

    Article  Google Scholar 

  30. Schwaferts C, Sogne V, Welz R, Meier F, Klein T, Niessner R, et al. Nanoplastic analysis by online coupling of Raman microscopy and field-flow fractionation enabled by optical tweezers. Anal Chem. 2020;92(8):5813–20. https://doi.org/10.1021/acs.analchem.9b05336.

    Article  PubMed  CAS  Google Scholar 

  31. Kools SA, Bauerlein P, Siegers W, Cornelissen E, De Voogt P. In Detection and analysis of plastics in the watercycle. 24th annual meeting SETAC, Basel, Switzerland, 2014; Basel, Switzerland, 2014;237–238.

Download references

Funding

M.V. is a senior postdoctoral fellow of the Research Foundation – Flanders (FWO 12ZD120N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Vanhaecke.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velimirovic, M., Tirez, K., Voorspoels, S. et al. Recent developments in mass spectrometry for the characterization of micro- and nanoscale plastic debris in the environment. Anal Bioanal Chem 413, 7–15 (2021). https://doi.org/10.1007/s00216-020-02898-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02898-w

Keywords

Navigation