Skip to main content

Advertisement

Log in

DZC DIAG: mobile application based on expert system to aid in the diagnosis of dengue, Zika, and chikungunya

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Dengue, Zika, and chikungunya are epidemic diseases transmitted by the Aedes mosquito. These virus infections can be so severe to the point of bringing on mobility and neurological problems, or even death. Expert systems (ES) can be used as tools for the identification of patterns intended to solve problems in the same way as a professional specialist would. This work aimed to develop an ES in the form of an Android application to serve as a supportive tool in the diagnosis of these arboviruses. The goal is to associate the set of symptoms from a patient to a score related to the likelihood of them having these diseases. To make this possible, we implemented a rule-based ES which considers the presence of symptoms itself and the relation between them to associate the case under analysis to others found in the literature. We performed 96 tests (32 for each illness), and our system had a success rate of 96.88%. Resident physicians of a public hospital also analyzed these clinical cases and achieved an average success rate of 72.92%. Comparing the results of the method proposed and errors made by health professionals, we showed an improvement in the effectiveness of clinical diagnoses.

Graphical abstract

Figure - DZC DIAG Operating Flowchart: the physicians record patients’ data and answer a series of questions related to the patient’s symptoms; after all the questions, the result is generated by the expert system (score for dengue, Zika, and chikungunya); and it is saved in the same device where the test was done and uploaded online to a FTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ignizio JP (1990) A brief introduction to expert systems. Comput Oper Res 17:523–533. https://doi.org/10.1016/0305-0548(90)90058-F

    Article  Google Scholar 

  2. Yoon Y, Guimaraes T (1995) Exploring the factors associated with expert systems success. MIS Q 19:83

    Article  Google Scholar 

  3. Buchanan BG, Feigenbaum EA (1978) Dendral and meta-dendral: their applications dimension. Artif Intell 11:5–24. https://doi.org/10.1016/0004-3702(78)90010-3

    Article  Google Scholar 

  4. Shortliffe EH (1976) Computer-based medical consultations: MYCIN. Ann Intern Med 85:831

    Google Scholar 

  5. Hart PE, Duda RO, Einaudi MT (1978) PROSPECTOR-A computer-based consultation system for mineral exploration. J Int Assoc Math Geol 10:589–610. https://doi.org/10.1007/BF02461988

    Article  Google Scholar 

  6. Nilsson NJ (1981) Principles of artificial intelligence. IEEE Trans Pattern Anal Mach Intell PAMI-3:112

    Article  Google Scholar 

  7. Abu-Nasser BS (2017) Medical expert systems survey. Int J Eng Inf Syst 1:2000-0

    Google Scholar 

  8. Patterson J, Sammon M, Garg M (2016) Dengue, Zika and chikungunya: emerging arboviruses in the new world. West J Emerg Med 17:671–679. https://doi.org/10.5811/westjem.2016.9.30904

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H et al (2011) Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proc Biol Sci 278:2446–2454. https://doi.org/10.1098/rspb.2010.2469

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM et al (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347. https://doi.org/10.7554/eLife.08347

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci 108:7460–7465. https://doi.org/10.1073/pnas.1101377108

    Article  PubMed  Google Scholar 

  12. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496

    Article  CAS  Google Scholar 

  13. OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborio S, Nunez A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E (2011) Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 3:114ra128. https://doi.org/10.1126/scitranslmed.3003084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. da Cunha RV, Trinta KS (2017) Chikungunya virus: clinical aspects and treatment - a review. Mem Inst Oswaldo Cruz 112:523–531. https://doi.org/10.1590/0074-02760170044

    Article  PubMed  PubMed Central  Google Scholar 

  15. Campos GS, Bandeira AC, Sardi SI (2015) Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis 21:1885–1886. https://doi.org/10.3201/eid2110.150847

    Article  PubMed  PubMed Central  Google Scholar 

  16. Foy BD, Kobylinski KC, Foy JLC, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB (2011) Probable non–vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17:880–882. https://doi.org/10.3201/eid1705.101939

    Article  PubMed  PubMed Central  Google Scholar 

  17. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau V-M (2015) Potential sexual transmission of Zika virus. Emerg Infect Dis 21:359–361. https://doi.org/10.3201/eid2102.141363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cauchemez S, Besnard M, Bompard P, Dub T, Guillemette-Artur P, Eyrolle-Guignot D, Salje H, van Kerkhove MD, Abadie V, Garel C, Fontanet A, Mallet HP (2016) Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387:2125–2132. https://doi.org/10.1016/S0140-6736(16)00651-6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pacheco O, Beltrán M, Nelson CA, Valencia D, Tolosa N, Farr SL, et al. (2016) Zika virus disease in Colombia — preliminary report. N Engl J Med: NEJMoa1604037. https://doi.org/10.1056/NEJMoa1604037

  20. Villamil-Gómez WE, Rodríguez-Morales AJ, Uribe-García AM, González-Arismendy E, Castellanos JE, Calvo EP, Álvarez-Mon M, Musso D (2016) Zika, dengue, and chikungunya co-infection in a pregnant woman from Colombia. Int J Infect Dis 51:135–138. https://doi.org/10.1016/j.ijid.2016.07.017

    Article  PubMed  Google Scholar 

  21. Mercado M, Acosta-Reyes J, Parra E, Pardo L, Rico A, Campo A, Navarro E, Viasus D (2016) Clinical and histopathological features of fatal cases with dengue and chikungunya virus co-infection in Colombia, 2014 to 2015. Eurosurveillance. https://doi.org/10.2807/1560-7917.ES.2016.21.22.30244

  22. Caetano-Anollés D (2013) Polymerase chain reaction. In: Brenner’s encyclopedia of genetics: second edition

  23. Konstantinou GN (2017) Enzyme-linked immunosorbent assay (ELISA). Methods Mol Biol

  24. Braga JU, Bressan C, Dalvi APR, Calvet GA, Daumas RP, Rodrigues N, Wakimoto M, Nogueira RMR, Nielsen-Saines K, Brito C, Bispo de Filippis AM, Brasil P (2017) Accuracy of Zika virus disease case definition during simultaneous dengue and chikungunya epidemics. PLoS One 12:e0179725. https://doi.org/10.1371/journal.pone.0179725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van der Gaag L, Lucas P (1990) An overview of expert system principles. Expert Syst Model Autom Reason:195–224

  26. Brasil M d S (2016) Protocolo de atenção à saúde e resposta à ocorrência de microcefalia relacionada à infecção pelo vírus zika. Secr Atenção à Saúde 42:167–183. https://doi.org/10.5585/EccoS.n39.5547

    Article  Google Scholar 

  27. Staples JE, Breiman RF, Powers AM (2009) Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin Infect Dis 49:942–948. https://doi.org/10.1086/605496

    Article  PubMed  Google Scholar 

  28. Song BH, Yun SI, Woolley M, Lee YM (2017) Zika virus: history, epidemiology, transmission, and clinical presentation. J Neuroimmunol 308:50–64

    Article  CAS  Google Scholar 

  29. Srikiatkhachorn A, Green S (2010) Markers of dengue disease severity. Curr Top Microbiol Immunol 338:67–82. https://doi.org/10.1007/978-3-642-02215-9_6

    Article  CAS  PubMed  Google Scholar 

  30. Brasil (2013) Dengue: diagnóstico e manejo clínico adulto e criança

  31. CDC C for DC and P (2015) Yellow fever. Centers Dis Control Prev. CDC. http://www.cdc.gov/yellowfever/

  32. Cdc CFDC and P (2013) Treatment of malaria (guidelines for clinicians)

  33. Winquist A, Fukuda K, Bridges C, Cox N (1999) Neuraminidase inhibitors for treatment of influenza A and B infections. Recomm Rep Morb Mortal Wkly Rep 48:1–9

    Google Scholar 

  34. Battegay R, Itin C, Itin P (2012) Dermatological signs and symptoms of measles: a prospective case series and comparison with the literature. Dermatology 224:1–4

    Article  Google Scholar 

  35. Han, Saab, Martin (2000) Acute viral hepatitis. Curr Treat Options Gastroenterol 3:481–486

    Article  CAS  Google Scholar 

  36. Carapetis JR, Beaton A, Cunningham MW et al (2016) Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Prim 2

  37. The World Health Organization (WHO) (2003) Human leptospirosis: guidance for diagnosis, surveillance and control

  38. Walker DH (2016) Rickettsia. International Encyclopedia of Public Health

  39. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28. https://doi.org/10.1016/0165-0114(78)90029-5

    Article  Google Scholar 

  40. Negnevitsky M (2011) Artificial intelligence: a guide to intelligent systems. https://doi.org/10.1007/s00894-010-0935-x

  41. Gilski P, Stefanski J (2015) Android OS: a review. TEM J 4:116–120

    Google Scholar 

  42. Azfar A, Choo KR, Liu L (2015) Forensic taxonomy of popular android mHealth apps. Proc Am Conf Inf Syst 2015:13–15

    Google Scholar 

  43. Ministry of Health of Brazil (2017) Health Brazil 2015/2016: an analysis of health situation and the epidemic caused by Zika virus and other diseases transmitted by Aedes aegypti

  44. Miranda LE, Miranda SJ, Rolland M (2003) Case report: spontaneous rupture of the spleen due to dengue fever. Braz J Infect Dis:S1413–S86702003000600011

  45. Chen LH (2016) Zika virus infection in a Massachusetts resident after travel to Costa Rica: a case report. Ann Intern Med 164:574–576

    Article  Google Scholar 

  46. Hassan R, Rahman MM, Moniruzzaman M et al (2014) Chikungunya - an emerging infection in Bangladesh: a case series. J Med Case Rep. https://doi.org/10.1186/1752-1947-8-67

  47. Foody G (1992) On the compensation for chance agreement in image classification accuracy assessment. Photogramm Eng Remote Sensing

  48. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46. https://doi.org/10.1016/0034-4257(91)90048-B

    Article  Google Scholar 

  49. Goutte C, Gaussier E (2005) A probabilistic interpretation of precision, recall and F-score, with Implication for Evaluation

  50. Ting KM (2017) Confusion matrix. In: Encyclopedia of Machine Learning and Data Mining, Confusion Matrix

  51. (2014) International vocabulary of metrology–basic and general concepts and associated terms. Chem Int -- Newsmag IUPAC. https://doi.org/10.1515/ci.2008.30.6.21

  52. Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med

  53. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. https://doi.org/10.1177/001316446002000104

    Article  Google Scholar 

  54. Word Health Organization (2008) Guidelines on clinical management of chikungunya fever. World Heal Organ. https://doi.org/10.1007/978-1-4939-1758-7_20

  55. Moreli ML, da Costa VG (2013) A systematic review of molecular diagnostic methods for the detection of arboviruses in clinical specimens in Brazil and the importance of a differential diagnosis. Virol Discov. https://doi.org/10.7243/2052-6202-1-1

  56. Johnson N, Voller K, Phipps LP, Mansfield K, Fooks AR (2012) Rapid molecular detection methods for arboviruses of livestock of importance to northern Europe. J Biomed Biotechnol 2012:1–18

    Article  Google Scholar 

  57. Davis LE, Beckham JD, Tyler KL (2008) North American encephalitic arboviruses. Neurol Clin 26:727–757

    Article  Google Scholar 

  58. Singla J, Grover D, Bhandari A (2014) Medical expert systems for diagnosis of various diseases. Int J Comput Appl 93:36–43. https://doi.org/10.5120/16230-5717

    Article  Google Scholar 

  59. Kunhimangalam R, Ovallath S, Joseph PK (2014) A clinical decision support system with an integrated EMR for diagnosis of peripheral neuropathy. J Med Syst 38:38. https://doi.org/10.1007/s10916-014-0038-9

    Article  PubMed  Google Scholar 

  60. Oliveira AD, Prats C, Espasa M et al (2017) The Malaria System MicroApp: a new, mobile device-based tool for malaria diagnosis. JMIR Res Protoc. https://doi.org/10.2196/resprot.6758

  61. Faisal T, Taib MN, Ibrahim F (2012) Adaptive neuro-fuzzy inference system for diagnosis risk in dengue patients. Expert Syst Appl 39:4483–4495. https://doi.org/10.1016/j.eswa.2011.09.140

    Article  Google Scholar 

  62. Rahimi SA, Menear M, Robitaille H, Légaré F (2017) Are mobile health applications useful for supporting shared decision making in diagnostic and treatment decisions? Glob Health Action 10:1332259. https://doi.org/10.1080/16549716.2017.1332259

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Federal University of Pernambuco for the structure required for the development of the project and the physicians of the Clinical Hospital for their contribution to the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilú Gomes Netto Monte da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, A.P.R., de Araujo, M.C.M., Cavalcanti, T.C. et al. DZC DIAG: mobile application based on expert system to aid in the diagnosis of dengue, Zika, and chikungunya. Med Biol Eng Comput 58, 2657–2672 (2020). https://doi.org/10.1007/s11517-020-02233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02233-6

Keywords

Navigation