Skip to main content
Log in

Scale-up of a Fibonacci-Type Photobioreactor for the Production of Dunaliella salina

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the previously proposed Fibonacci-type photobioreactor is scaled up and evaluated to produce Dunaliella salina. First, the composition of the culture medium was optimized to achieve maximal productivity. Next, the Fibonacci-type reactor was scaled up to 1250 L maintaining high solar radiation interception capacity of this type of reactor. Finally, the performance of the reactor for the production of green cells of Dunaliella salina at the environmental conditions prevailing in the Atacama Desert was evaluated. Data demonstrated that the proposed photobioreactor allows the temperature, pH and dissolved oxygen concentration to be maintained within the optimal ranges recommended for the selected strain. Both better exposure to solar radiation and photonic flow dilution avoids the use of cooling systems to prevent overheating under outdoor conditions. The system allows up to 60% more solar radiation to be intercepted than does the horizontal surface, likewise, allowing to maintain the pH efficiently through CO2 injection and to keep the dissolved oxygen concentration in acceptable ranges, thanks to its adequate mass transfer capacity. The biomass concentration reached up to 0.96 g L−1, three times higher than that obtained in a raceway reactor under the same environmental conditions, whereas productivity was up to 0.12 g L−1 day (2.41 g m−2 day). Maximum specific outdoor growth rates reached up to 0.17 day−1. Undoubtedly, this technology scaled up constitutes a new type of photobioreactor for use at the industrial scale since it is capable of maximizing biomass productivity under high light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sigamani, S., Ramamurthy, D., & Natarajan, H. (2016). A review on potential biotechnological applications of microalgae. Journal of Applied Pharmaceutical Science, 6(8), 179–184. https://doi.org/10.7324/JAPS.2016.60829.

    Article  CAS  Google Scholar 

  2. Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6(PA), 52–63. https://doi.org/10.1016/j.algal.2014.09.002.

    Article  Google Scholar 

  3. Mobin, S., & Alam, F. (2017). Some promising microalgal species for commercial applications: a review. In Energy Procedia (Vol. 110). https://doi.org/10.1016/j.egypro.2017.03.177

  4. Ramana, K. V., Xavier, J. R., & Sharma, R. K. (2017). Recent trends in pharmaceutical biotechnology. Pharmaceutical Biotechnology: Current Research, 1(1:5), 1–10.

    Google Scholar 

  5. Ben-Amotz, A. (1995). New mode of Dunaliella biotechnology: two-phases for ß-carotene production. Applied Phycology, 7, 65–68.

    Article  CAS  Google Scholar 

  6. G.M.I. (2015). Beta carotene market size, industry analysis report, regional outlook, application development totential, price trend, competitive market share & forecast, 2020 - 2026. Global Market Insigts.

  7. Demirbas, A., & Demirba, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738–2749.

    Article  CAS  Google Scholar 

  8. Ben-Amotz, A. (1995). New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. Journal of Applied Phycology, 7(1), 65–68. https://doi.org/10.1007/BF00003552.

    Article  CAS  Google Scholar 

  9. Hamed, I., AK, B., Isik, O., Uslu, L., & Vursavus, K. K. (2017). The effect of temperature and salinity on the growth and carotenogenesis of three Dunaliella species (Dunaliella sp. Lake Isolate, Dunaliella salina CCAP 19/18, and D. bardawil LB 2538) Cultivated under Laboratory Conditions. Journal of Bioscience and Bioengineering, 11(November). https://doi.org/10.1999/1307-6892/69056.

  10. Baroli, I., & Melis, A. (1995). Photoinhibition and repair in Dunaliella salina acclimated to different growth irradiances. Planta, 198, 640–646.

    Article  Google Scholar 

  11. Carvalho, A. P. A., Meireles, L. A. L. A., & Malcata, F. X. (2006). Microalgal reactors: a review of enclosed system designs and performances. Biotechnology Progress, 22(6), 1490–1506.

    Article  CAS  PubMed  Google Scholar 

  12. Ling, X., Weathers, P. J., Xiong, X.-R., & Liu, C.-Z. (2009). Microalgal bioreactors: challenges and opportunities. Engineering in Life Sciences, 9(3), 178–189.

    Article  Google Scholar 

  13. Acién, F. G., Fernández, J. M., Magán, J. J., & Molina, E. (2012). Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344–1353. https://doi.org/10.1016/j.biotechadv.2012.02.005.

    Article  PubMed  Google Scholar 

  14. Kroumov, A., Gacheva, G., Iliev, I., Alexandrov, S., Pilarski, P., & Petkov, G. (2013). Analysis of Sf/V ratio of photobioreactors linked with algal physiology. Genetics and. Plant Physiology, 3(1–2), 55–64.

    Google Scholar 

  15. Slegers, P. M. M., van Beveren, P. J. M. J. M., Wijffels, R. H. H., Van Straten, G., Van Boxtel, A. J. B., Van Straten, G., & Van Boxtel, A. J. B. (2013). Scenario analysis of large scale algae production in tubular photobioreactors. Applied Energy, 105, 395–406. https://doi.org/10.1016/j.apenergy.2012.12.068.

    Article  Google Scholar 

  16. Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67–78. https://doi.org/10.1016/j.algal.2016.04.021.

    Article  Google Scholar 

  17. Richmond, A. (2004). Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia, 512, 33–37. https://doi.org/10.1023/B:HYDR.0000020365.06145.36.

    Article  Google Scholar 

  18. Briassoulis, D., Panagakis, P., Chionidis, M., Tzenos, D., Lalos, A., Tsinos, C., et al. (2010). An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technology, 101(17). https://doi.org/10.1016/j.biortech.2010.03.103.

  19. Torzillo, G., Pushparaj, B., Bocci, F., Balloni, W., Materassi, R., & Florenzano, G. (1986). Production of Spirulina biomass in closed photobioreactors. Biomass, 11, 61–74.

    Article  Google Scholar 

  20. Behrens. (2005). Photobioreactors and fermentors: the light and dark sides of growing algae. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 189–204). San Diego: Elsevier.

    Google Scholar 

  21. Acién, F. G. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C. C., Sepúlveda, C., & Masojídek, J. (2017). Photobioreactors for the production of microalgae. In Gonzalez-Fernandez, Cristina & Muñoz, R (Eds.), Microalgae-based biofuels and bioproducts: from feedstock cultivation to end-products (Vol. 12, pp. 1–44). Sawston: Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101023-5.00001-7.

  22. Díaz, J. P., Inostroza, C., & Acién Fernández, F. G. (2019). Fibonacci-type tubular photobioreactor for the production of microalgae. Process Biochemistry, 86, 1–8. https://doi.org/10.1016/j.procbio.2019.08.008.

    Article  CAS  Google Scholar 

  23. Dixon, L. E., Hodge, S. K., Ooijen, G. Van, Troein, C., Akman, O. E., & Millar, A. J. (2014). Light and circadian regulation of clock components aids flexible responses to environmental signals.

  24. Xu, Y., Ibrahim, I. M., & Harvey, P. J. (2016). The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiology and Biochemistry, 106, 305–315. https://doi.org/10.1016/j.plaphy.2016.05.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pradeep Mohan Kumar, K., Vijayan, V., Suresh Kumar, B., Vivek, C. M., & Dinesh, S. (2018). Computational analysis and optimization of spiral plate heat exchanger. Journal of Applied Fluid Mechanics, 11(Specialissue), 121–128.

    Google Scholar 

  26. Ministerio de Energía. (2019). Explorador solar. Gobierno de Chile.

  27. Jacobson, M. Z., & Jadhav, V. (2018). World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Solar Energy, 169(April), 55–66. https://doi.org/10.1016/j.solener.2018.04.030.

    Article  Google Scholar 

  28. Tredici, M. R., & Zlttelli, G. C. (1998). Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnology and Bioengineering, 57(2), 187–197. https://doi.org/10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  29. Grima, E. M., Camacho, F. G., Pérez, J. A. S., Sevilla, J. M. F., Fernández, F. G. A., & Gómez, A. C. (1994). A mathematical model of microalgal growth in light-limited chemostat culture. Journal of Chemical Technology and Biotechnology, 61(2), 167–173. https://doi.org/10.1002/jctb.280610212.

    Article  Google Scholar 

  30. Kroumov, A. D. (2013). Analysis of Sf/V ratio of photobioreactors linked with algal physiology. Genetics and. Plant Physiology, 3(1–2), 55–64.

    Google Scholar 

  31. Huang, Q., Jiang, F., Wang, L., & Yang, C. (2017). Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering, 3(3). https://doi.org/10.1016/J.ENG.2017.03.020.

  32. Camacho-Rubio, F., Acién, F. G., Sánchez-Pérez, J. A., García-Camacho, F., & Molina-Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62(1), 71–86. https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1<71::AID-BIT9>3.0.CO;2-T.

    Article  Google Scholar 

  33. Mendoza, J. L., Granados, M. R., de Godos, I., Acién, F. G., Molina, E., Heaven, S., & Banks, C. J. (2013). Oxygen transfer and evolution in microalgal culture in open raceways. Bioresource Technology, 137, 188–195.

    Article  CAS  PubMed  Google Scholar 

  34. Barceló-Villalobos, M., Guzmán Sánchez, J. L. L., Martín Cara, I., Sánchez Molina, J. A. A., & Acién Fernández, F. G. G. (2018). Analysis of mass transfer capacity in raceway reactors. Algal Research, 35(July), 91–97. https://doi.org/10.1016/j.algal.2018.08.017.

    Article  Google Scholar 

  35. Camacho Rubio, F., Acien Fernandez, F. G., Sáchez Pérez, J. A., García Camacho, F., Molina Grima, E., & Alii, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentrationprofiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62(1) (FEBRUARY), 71–86. https://doi.org/10.1002/(SICI)1097-0290(19990105)62.

    Article  Google Scholar 

  36. Scoma, A., Giannelli, L., Faraloni, C., & Torzillo, G. (2012). Outdoor H2 production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. Journal of Biotechnology, 157(4), 620–627. https://doi.org/10.1016/j.jbiotec.2011.06.040.

    Article  CAS  PubMed  Google Scholar 

  37. Perner-Nochta, I., & Posten, C. (2007). Simulations of light intensity variation in photobioreactors. Journal of Biotechnology, 131(3), 276–285.

    Article  CAS  PubMed  Google Scholar 

  38. Oncel, S., & Sabankay, M. (2012). Microalgal biohydrogen production considering light energy and mixing time as the two key features for scale-up. Bioresource Technology, 121, 228–234. https://doi.org/10.1016/j.biortech.2012.06.079.

    Article  CAS  PubMed  Google Scholar 

  39. Richmond, A. (2013). Biological principles of mass cultivation of phototrophic microalgae. In R. Amos & Q. Hu (Eds.), Handbook of microalgal culture, applied phycology and biotechnology (pp. 171–204). Oxford: Wiley & Sons, Ltd.Blackwell Publishing Ltd.

    Chapter  Google Scholar 

  40. Wang, B., Lan, C. Q., & Horsman, M. (2012). Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances, 30(4), 904–912. https://doi.org/10.1016/j.biotechadv.2012.01.019.

    Article  CAS  PubMed  Google Scholar 

  41. Daliry, S., Hallajisani, A., Mohammadi Roshandeh, J., Nouri, H., & Golzary, A. (2017). Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management. https://doi.org/10.22034/gjesm.2017.03.02.010.

  42. Cuaresma, M., Janssen, M., Vilchez, C., & Wiljffels, R. (2011). Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technology, 102(8), 29–37.

    Article  Google Scholar 

  43. Torzillo, G., & Zittelli, G. C. (2015). Tubular photobioreactors. In M. E. Zappi, A. Prokop, & R. K. Bajpai (Eds.), (pp. 187–212). Switzerland: Springer International Publishing.

    Google Scholar 

  44. Acién, F. G., Fernández, J. M., Molina Grima, E., & A, F. G. (2013). Photobioreactors for the production of microalgae. Reviews in Environmental Science and Biotechnology, 12(2), 131–151.

    Article  Google Scholar 

  45. Masojídek, J., Malapascua, J. R., Kopecký, J., & Sergejevová, M. (2015). Thin-layer systems for mass cultivation of microalgae: flat panels and sloping cascades. In Algal biorefineries: volume 2: products and refinery design (pp. 237–261). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-20200-6_7.

    Chapter  Google Scholar 

  46. Sierra, E., Acién, F. G., Fernández, J. M., García, J. L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1–3), 136–147.

    Article  CAS  Google Scholar 

  47. Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028. https://doi.org/10.1016/j.biortech.2007.01.046.

    Article  CAS  PubMed  Google Scholar 

  48. Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21, 493–507. https://doi.org/10.1007/s10811-008-9392-7.

    Article  CAS  Google Scholar 

  49. García-González, M., Moreno, J., Manzano, J. C., Florencio, F. J., Guerrero, M. G., García-González, M., et al. (2005). Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 115(1), 81–90. https://doi.org/10.1016/j.jbiotec.2004.07.010.

    Article  CAS  PubMed  Google Scholar 

  50. Weissman, J. C., & Products, R. P. G. M. (1987). Microalgal open pond systems for the purpose of producing fuels. Solar Energy Research Institute, 61, 1–231.

    Google Scholar 

  51. Costache, T. A., Acién Fernández, F. G., Morales, M. M., Fernández-Sevilla, J. M., Stamatin, I., & Molina, E. (2013). Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Applied Microbiology and Biotechnology, 97(17), 7627–7637. https://doi.org/10.1007/s00253-013-5035-2.

    Article  CAS  PubMed  Google Scholar 

  52. Ippoliti, D., González, A., Martín, I., Sevilla, J. M. F., Pistocchi, R., & Acién, F. G. (2016). Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. Journal of Applied Phycology, 28(6), 3159–3166. https://doi.org/10.1007/s10811-016-0856-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the members of the FONDEF project, D04I1258: Marcela Avila, Elizabet Rojas and Pablo Barria. The authors are also very grateful to Attilio Gattavara and Masatoshi Futagawa for their generous cooperation and especially to Claudio Brieba (R.I.P.) for being part of this dream.

Funding

This research was supported by EU H2020 SABANA project from the European Union’s Horizon 2020 Research and Innovation program under the Grant Agreement No. 727874.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Gabriel Acién.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, J.P., Inostroza, C. & Acién, F.G. Scale-up of a Fibonacci-Type Photobioreactor for the Production of Dunaliella salina. Appl Biochem Biotechnol 193, 188–204 (2021). https://doi.org/10.1007/s12010-020-03410-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03410-x

Keywords

Navigation