Skip to main content

Advertisement

Log in

Enhanced protocol for quantitative N-linked glycomics analysis using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT)™

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The analysis of N-linked glycans using liquid chromatography and mass spectrometry (LC-MS) presents significant challenges, particularly owing to their hydrophilic nature. To address these difficulties, a variety of derivatization methods have been developed to facilitate improved ionization and detection sensitivity. One such method, the Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT)™ strategy for labeling glycans, has previously been utilized in the analysis of N- and O-linked glycans in biological samples. To assess the maximum sensitivity and separability of the INLIGHT™ preparation and analysis pipeline, several critical steps were investigated. First, recombinant and nonrecombinant sources of PNGase F were compared to assess variations in the released glycans. Second, modifications in the INLIGHT™ derivatization step were evaluated including temperature optimization, solvent composition changes, reaction condition length and tag concentration. Optimization of the modified method resulted in 20–100 times greater peak areas for the detected N-linked glycans in fetuin and horseradish peroxidase compared with the standard method. Furthermore, the identification of low-abundance glycans, such as (Fuc)1(Gal)2(GlcNAc)4(Man)3(NeuAc)1 and (Gal)3(GlcNAc)5(Man)3(NeuAc)3, was possible. Finally, the optimal LC setup for the INLIGHT™ derivatized N-linked glycan analyses was found to be a C18 reverse-phase (RP) column with mobile phases typical of RPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parker RB, Kohler JJ. Regulation of intracellular signaling by extracellular glycan remodeling. ACS Chem Biol. 2010;5:35–46. https://doi.org/10.1038/jid.2014.371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jayaprakash NG, Surolia A. Role of glycosylation in nucleating protein folding and stability. Biochem J. 2017;474:2333–47. https://doi.org/10.1042/BCJ20170111.

    Article  PubMed  CAS  Google Scholar 

  3. Bard F, Chia J. Cracking the glycome encoder: signaling, trafficking, and glycosylation. Trends Cell Biol. 2016;26:379–88. https://doi.org/10.1016/j.tcb.2015.12.004.

    Article  PubMed  CAS  Google Scholar 

  4. Cho BG, Veillon L, Mechref Y. N-Glycan profile of cerebrospinal fluids from Alzheimer’s disease patients using liquid chromatography with mass spectrometry. J Proteome Res. 2019;18:3770–9. https://doi.org/10.1021/acs.jproteome.9b00504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Abou-Abbass H, Abou-El-Hassan H, Bahmad H, Zibara K, Zebian A, Youssef R, et al. Glycosylation and other PTMs alterations in neurodegenerative diseases: current status and future role in neurotrauma. Electrophoresis. 2016;37:1549–61.

    Article  CAS  Google Scholar 

  6. McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions. J Proteome Res. 2014;13:3131–43. https://doi.org/10.1021/pr500146y.

    Article  PubMed  CAS  Google Scholar 

  7. Wang H, Ramakrishnan A, Fletcher S, Prochownik EV, Genetics M. HHS Public Protein glycosylation in cancer. Annu Rev Pathol. 2015;2:473–510. https://doi.org/10.14440/jbm.2015.54.A.

    Article  Google Scholar 

  8. Stanley P, Taniguchi N, Aebi M (2017) Chapter 9. N-Glycans, Essentials of glycobiology, 2nd Edition. Essentials Glycobiol 1–14. https://doi.org/10.1101/glycobiology.3e.009.

  9. Stanley P, Taniguchi NAM. N-glycans. Essent Glycobiol. 2017:1–14. https://doi.org/10.1101/glycobiology.3e.009.

  10. Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochem Biophys Acta. 1999;1473:4–8. https://doi.org/10.1097/00013611-198607000-00004.

    Article  PubMed  CAS  Google Scholar 

  11. Tarentino AL, Gomez CM, Plummer TH. Deglycosylation of asparagine-linked glycans by peptide: N-glycosidase F. Biochemistry. 1985;24:4665–71. https://doi.org/10.1021/bi00338a028.

    Article  PubMed  CAS  Google Scholar 

  12. Han L, Costello CE. Mass spectrometry of glycans. Biochem. 2013;78:710–20. https://doi.org/10.1134/S0006297913070031.

    Article  CAS  Google Scholar 

  13. Wada Y, Azadi P, Costello CE, Dell A, Dwek RA, Geyer H, et al. Comparison of the methods for profiling glycoprotein glycans - HUPO human disease glycomics/proteome initiative multi-institutional study. Glycobiology. 2007;17:411–22. https://doi.org/10.1093/glycob/cwl086.

    Article  PubMed  CAS  Google Scholar 

  14. Nováková L, Havlíková L, Vlčková H. Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. TrAC Trends Anal Chem. 2014;63:55–64. https://doi.org/10.1016/J.TRAC.2014.08.004.

    Article  Google Scholar 

  15. West C, Elfakir C, Lafosse M. Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J Chromatogr A. 2010;1217:3201–16.

    Article  CAS  Google Scholar 

  16. Null AP, Nepomuceno AI, Muddiman DC. Implications of hydrophobicity and free energy of solvation for characterization of nucleic acids by electrospray ionization mass spectrometry. Anal Chem. 2003;75:1331–9. https://doi.org/10.1021/ac026217o.

    Article  PubMed  CAS  Google Scholar 

  17. Baldwin MA, Stahl N, Reinders LG, Gibson BW, Prusiner SB, Burlingame AL. Permethylation and tandem mass spectrometry of oligosaccharides having free hexosamine: analysis of the glycoinositol phospholipid anchor glycan from the scrapie prion protein. Anal Biochem. 1990;191:174–82. https://doi.org/10.1016/0003-2697(90)90405-X.

    Article  PubMed  CAS  Google Scholar 

  18. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995;230:229–38.

    Article  CAS  Google Scholar 

  19. Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397:3457–81.

    Article  CAS  Google Scholar 

  20. Hahne H, Neubert P, Kuhn K, Etienne C, Bomgarden R, Rogers JC, et al. Carbonyl-reactive tandem mass tags for the proteome-wide quantification of N-linked glycans. Anal Chem. 2012;84:3716–24. https://doi.org/10.1021/ac300197c.

    Article  PubMed  CAS  Google Scholar 

  21. Walker SH, Lilley LM, Enamorado MF, Comins DL, Muddiman DC. Hydrophobic derivatization of N-linked glycans for increased ion abundance in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 2011;22:1309–17. https://doi.org/10.1007/s13361-011-0140-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Walker SH, Carlisle BC, Muddiman DC. Systematic comparison of reverse phase and hydrophilic interaction liquid chromatography platforms for the analysis of N-linked glycans. Anal Chem. 2012;84:8198–206. https://doi.org/10.1021/ac3012494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Walker SH, Taylor AD, Muddiman DC. Individuality normalization when labeling with isotopic glycan hydrazide tags (INLIGHT): a novel glycan-relative quantification strategy. J Am Soc Mass Spectrom. 2013;24:1376–84. https://doi.org/10.1007/s13361-013-0681-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Abdul Rahman S, Bergström E, Watson CJ, Wilson KM, Ashford DA, Thomas JR, et al. Filter-aided N-glycan separation (FANGS): a convenient sample preparation method for mass spectrometric N-glycan profiling. J Proteome Res. 2014;13:1167–76. https://doi.org/10.1021/pr401043r.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hecht ES, McCord JP, Muddiman DC. Definitive screening design optimization of mass spectrometry parameters for sensitive comparison of filter and solid phase extraction purified, INLIGHT plasma N-glycans. Anal Chem. 2015;87:7305–12. https://doi.org/10.1021/acs.analchem.5b01609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hecht ES, Scholl EH, Walker SH, Taylor AD, Cliby WA, Motsinger-Reif AA, et al. Relative quantification and higher-order modeling of the plasma glycan cancer burden ratio in ovarian cancer case-control samples. J Proteome Res. 2015;14:4394–401. https://doi.org/10.1021/acs.jproteome.5b00703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. King SR, Hecht ES, Muddiman DC. Demonstration of hydrazide tagging for O-glycans and a central composite design of experiments optimization using the INLIGHTTM reagent. Anal Bioanal Chem. 2018;410:1409–15. https://doi.org/10.1007/s00216-017-0828-2.

    Article  PubMed  CAS  Google Scholar 

  28. Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, et al. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem. 2005;280:37415–22. https://doi.org/10.1074/jbc.M506874200.

    Article  PubMed  CAS  Google Scholar 

  29. Kuraya N, Hase S. Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions. J Biochem. 1992;112:122–6.

    Article  CAS  Google Scholar 

  30. Taylor AM, Holst O, Thomas-Oates J. Mass spectrometric profiling of O-linked glycans released directly from glycoproteins in gels using in-gel reductive β-elimination. Proteomics. 2006;6:2936–46. https://doi.org/10.1002/pmic.200500331.

    Article  PubMed  CAS  Google Scholar 

  31. Bereman MS, Comins DL, Muddiman DC. Increasing the hydrophobicity and electrospray response of glycans through derivatization with novel cationic hydrazides. Chem Commun. 2010;46:237–9. https://doi.org/10.1039/b915589a.

    Article  CAS  Google Scholar 

  32. Hecht ES, McCord JP, Muddiman DC (2016) A quantitative glycomics and proteomics combined purification strategy. J Vis Exp e53735. https://doi.org/10.3791/53735

  33. Sun X, Tao L, Yi L, Ouyang Y, Xu N, Li D, et al. N-glycans released from glycoproteins using a commercial kit and comprehensively analyzed with a hypothetical database. J Pharm Anal. 2017;7:87–94. https://doi.org/10.1016/j.jpha.2017.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Melmer M, Stangler T, Premstaller A, Lindner W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis. J Chromatogr A. 2011;1218:118–23. https://doi.org/10.1016/j.chroma.2010.10.122.

    Article  PubMed  CAS  Google Scholar 

  35. Ding W, Nothaft H, Szymanski CM, Kelly J. Identification and quantification of glycoproteins using ion-pairing normal-phase liquid chromatography and mass spectrometry. Mol Cell Proteomics. 2009;8:2170–85. https://doi.org/10.1074/mcp.M900088-MCP200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gray JS, Yang BY, Montgomery R. Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohydr Res. 1998;311:61–9. https://doi.org/10.1016/s0008-6215(98)00209-2.

    Article  PubMed  CAS  Google Scholar 

  37. Yang BY, Gray JSS, Montgomery R. The glycans of horseradish peroxidase. Carbohydr Res. 1996;287:203–12. https://doi.org/10.1016/0008-6215(96)00073-0.

    Article  PubMed  CAS  Google Scholar 

  38. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8. https://doi.org/10.1093/bioinformatics/btq054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Loziuk PL, Hecht ES, Muddiman DC. N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa. Anal Bioanal Chem. 2017;409:487–97. https://doi.org/10.1007/s00216-016-9776-5.

    Article  PubMed  CAS  Google Scholar 

  40. Hecht ES, Loziuk PL, Muddiman DC (2017) Xylose migration during tandem mass spectrometry of N-linked glycans. J Am Soc Mass Spectrom 28. https://doi.org/10.1007/s13361-016-1588-5

  41. Niedzwiecki MM, Walker DI, Howell JC, Watts KD, Jones DP, Miller GW, et al. High-resolution metabolomic profiling of Alzheimer’s disease in plasma. Ann Clin Transl Neurol. 2019. https://doi.org/10.1002/acn3.50956.

  42. Holst S, Heijs B, de Haan N, van Zeijl RJM, Briaire-de Bruijn IH, van Pelt GW, et al. Linkage-specific in situ sialic acid derivatization for N-glycan mass spectrometry imaging of formalin-fixed paraffin-embedded tissues. Anal Chem. 2016;88:5904–13. https://doi.org/10.1021/acs.analchem.6b00819.

    Article  PubMed  CAS  Google Scholar 

  43. West CA, Wang M, Herrera H, Liang H, Black A, Angel PM, et al. N-linked glycan branching and fucosylation are increased directly in Hcc tissue as determined through in situ glycan imaging. J Proteome Res. 2018;17:3454–62. https://doi.org/10.1021/acs.jproteome.8b00323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Powers T, Holst S, Wuhrer M, Mehta A, Drake R. Two-dimensional N-glycan distribution mapping of hepatocellular carcinoma tissues by MALDI-imaging mass spectrometry. Biomolecules. 2015;5:2554–72. https://doi.org/10.3390/biom5042554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Angel PM, Saunders J, Clift CL, White-Gilbertson S, Voelkel-Johnson C, Yeh E, et al. A rapid array-based approach to N -glycan profiling of cultured cells. J Proteome Res. 2019;18:3630–9. https://doi.org/10.1021/acs.jproteome.9b00303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mehta A, Comunale MA, Rawat S, Casciano JC, Lamontagne J, Herrera H, Ramanathan A, Betesh L, Wang M, Norton P, Steel LF, Bouchard MJ (2016) Intrinsic hepatocyte dedifferentiation is accompanied by upregulation of mesenchymal markers, protein sialylation and core alpha 1,6 linked fucosylation. Sci Rep 6. https://doi.org/10.1038/srep27965

  47. Granger BL. Propeptide genesis by Kex2-dependent cleavage of yeast wall protein 1 (Ywp1) of Candida albicans. PLoS One. 2018;13:e0207955. https://doi.org/10.1371/journal.pone.0207955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Walker SH, Budhathoki-Uprety J, Novak BM, Muddiman DC. Stable-isotope labeled hydrophobic hydrazide reagents for the relative quantification of n-linked glycans by electrospray ionization mass spectrometry. Anal Chem. 2011;83:6738–45. https://doi.org/10.1021/ac201376q.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Loos M, Gerber C, Corona F, Hollender J, Singer H. Accelerated isotope fine structure calculation using pruned transition trees. Anal Chem. 2015;87:5738–44. https://doi.org/10.1021/acs.analchem.5b00941.

    Article  PubMed  CAS  Google Scholar 

  50. Chu CS, Niñonuevo MR, Clowers BH, Perkins PD, An HJ, Yin H, et al. Profile of native N-linked glycan structures from human serum using high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. Proteomics. 2009;9:1939–51. https://doi.org/10.1002/pmic.200800249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ashwood C, Lin CH, Thaysen-Andersen M, Packer NH. Discrimination of isomers of released N- and O-glycans using diagnostic product ions in negative ion PGC-LC-ESI-MS/MS. J Am Soc Mass Spectrom. 2018;29:1194–209. https://doi.org/10.1007/s13361-018-1932-z.

    Article  PubMed  CAS  Google Scholar 

  52. Ashwood C, Pratt B, Maclean BX, Gundry RL, Packer NH. Standardization of PGC-LC-MS-based glycomics for sample specific glycotyping. Analyst. 2019;144:3601–12. https://doi.org/10.1039/c9an00486f.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Song T, Ozcan S, Becker A, Lebrilla CB. In-depth method for the characterization of glycosylation in manufactured recombinant monoclonal antibody drugs. Anal Chem. 2014;86:5661–6. https://doi.org/10.1021/ac501102t.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Song T, Aldredge D, Lebrilla CB. A method for in-depth structural annotation of human serum glycans that yields biological variations. Anal Chem. 2015;87:7754–62. https://doi.org/10.1021/acs.analchem.5b01340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Abrahams JL, Campbell MP, Packer NH. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J. 2018;35:15–29. https://doi.org/10.1007/s10719-017-9793-4.

    Article  PubMed  CAS  Google Scholar 

  56. Bapiro TE, Richards FM, Jodrell DI. Understanding the complexity of porous graphitic carbon (PGC) chromatography: modulation of mobile-stationary phase interactions overcomes loss of retention and reduces variability. Anal Chem. 2016;88:6190–4. https://doi.org/10.1021/acs.analchem.6b01167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yamaguchi Y, Nishima W, Re S, Sugita Y. Confident identification of isomeric N-glycan structures by combined ion mobility mass spectrometry and hydrophilic interaction liquid chromatography. Rapid Commun Mass Spectrom. 2012;26:2877–84. https://doi.org/10.1002/rcm.6412.

    Article  PubMed  CAS  Google Scholar 

  58. Zhao J, Li S, Li C, Wu S-L, Xu W, Chen Y, et al. Identification of low abundant isomeric N-glycan structures in biological therapeutics by LC/MS. Anal Chem. 2016;88:7049–59. https://doi.org/10.1021/acs.analchem.6b00636.

    Article  PubMed  CAS  Google Scholar 

  59. Szabo Z, Guttman A, Karger BL. Rapid release of n-linked glycans from glycoproteins by pressure-cycling technology. Anal Chem. 2010;82:2588–93. https://doi.org/10.1021/ac100098e.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A. Orthogonal liquid chromatography–mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A. 2017;1498:128–46. https://doi.org/10.1016/j.chroma.2017.02.072.

    Article  PubMed  CAS  Google Scholar 

  61. Higel F, Demelbauer U, Seidl A, Friess W, Sörgel F. Reversed-phase liquid-chromatographic mass spectrometric N-glycan analysis of biopharmaceuticals. Anal Bioanal Chem. 2013;405:2481–93. https://doi.org/10.1007/s00216-012-6690-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Prater BD, Connelly HM, Qin Q, Cockrill SL. High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Anal Biochem. 2009;385:69–79. https://doi.org/10.1016/j.ab.2008.10.023.

    Article  PubMed  CAS  Google Scholar 

  63. Chen X, Flynn GC. Analysis of N-glycans from recombinant immunoglobulin G by on-line reversed-phase high-performance liquid chromatography/mass spectrometry. Anal Biochem. 2007;370:147–61. https://doi.org/10.1016/j.ab.2007.08.012.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in part by the Molecular Education, Technology and Research Innovation Center (METRIC) at NC State University, which is supported by the State of North Carolina.

Funding

This work received financial support from the National Institute on Aging at the National Institute of Health (R56AG063885) and North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Ethics declarations

The pooled male and female human plasma samples used in these studies were sourced from a licensed entity, Golden West Biologicals (Temecula, CA). The samples were de-identified by Golden West Biologicals as to which participants were used to make up the male and the female pool. Upon arrival and for this study, we further pooled the male and female plasma 1:1 (v/v) prior to analysis. No data in our study can be linked to any human subject.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmar, J.G., Butler, K.E., Baker, E.S. et al. Enhanced protocol for quantitative N-linked glycomics analysis using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT)™. Anal Bioanal Chem 412, 7569–7579 (2020). https://doi.org/10.1007/s00216-020-02892-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02892-2

Keywords

Navigation