Skip to main content
Log in

Eosin Y as a high-efficient photooxidase mimic for colorimetric detection of sodium azide

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The reported fluorescent dye–based artificial light–responsive oxidase mimics are suffering from their low catalytic efficiency. To overcome the limitation, we report the photooxidase-mimicking activity of Eosin Y which can catalyze the oxidation of various chromogenic substrates such as 3,3′,5,5′-tetramethylbenzydine (TMB), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 3,3′-diaminobenzidine (DAB), and o-phenylenediamine (OPD) by dissolved oxygen. The photooxidase-like activity of Eosin Y is highly efficient for TMB substrate, and its catalytic efficiency is higher than that of the reported fluorescein (130 fold) and 9-mesityl-10-methylacridinium ion (7.7-fold) mimetic photooxidase. Moreover, the photosensitized Eosin Y-TMB chromogenic system is utilized for colorimetric detection of highly toxic and explosive sodium azide (NaN3) in a linear range from 5 to 500 μM with a limit of detection of 3.5 μM. The resulting colorimetric assay is selective and applied to determine NaN3 in real lake water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kuah E, Toh S, Yee J, Ma Q, Gao Z. Enzyme mimics: advances and applications. Chem-Eur J. 2016;22:8404–30.

    Article  CAS  Google Scholar 

  2. Larsen RW, Wojtas L, Perman J, Musselman RL, Zaworotko MJ, Vetromile CM. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme. J Am Chem Soc. 2011;133:10356–9.

    Article  CAS  Google Scholar 

  3. Raynal M, Ballester P, Vidal-Ferran A, Van Leeuwen PW. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev. 2014;43:1734–87.

    Article  CAS  Google Scholar 

  4. Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front. 2016;3:41–60.

    Article  CAS  Google Scholar 

  5. Liu L, Shi Y, Yang Y, Li M, Long Y, Huang Y, et al. Fluorescein as an artificial enzyme to mimic peroxidase. Chem Commun. 2016;52:13912–5.

    Article  CAS  Google Scholar 

  6. Gu ZY, Park J, Raiff A, Wei Z, Zhou HC. Metal-organic frameworks as biomimetic catalysts. Chem Cat Chem. 2014;6:67–75.

    CAS  Google Scholar 

  7. Liu L, Sun C, Yang J, Shi Y, Long Y, Zheng H. Fluorescein as a visible-light-induced oxidase mimic for signal-amplified colorimetric assay of carboxylesterase by an enzymatic cascade reaction. Fluorescein Chem–A Eur J. 2018;24:6148–54.

    Article  CAS  Google Scholar 

  8. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52:2190–200.

    Article  CAS  Google Scholar 

  9. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48:1004–76.

    Article  CAS  Google Scholar 

  10. Wang Q, Wei H, Zhang Z, Wang E, Dong S. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem. 2018;105:218–24.

    Article  CAS  Google Scholar 

  11. Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119:4357–412.

    Article  CAS  Google Scholar 

  12. Lin Y, Zhao A, Tao Y, Ren J, Qu X. Ionic liquid as an efficient modulator on artificial enzyme system: toward the realization of high-temperature catalytic reactions. J Am Chem Soc. 2013;135:4207–10.

    Article  CAS  Google Scholar 

  13. Singh N, Mugesh G. CeVO4 Nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species. Angew Chem Int Ed 2019; 58: 7797–7801.

  14. Liu K, Yuan C, Zou Q, Xie Z, Yan X. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angew Chem Int Ed. 2017;56:7876–80.

    Article  CAS  Google Scholar 

  15. Zhang J, Wu S, Lu X, Wu P, Liu J. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019;19:3214–20.

    Article  CAS  Google Scholar 

  16. Zhang J, Liu J. Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale. 2020;12:2914–23.

    Article  CAS  Google Scholar 

  17. Wang G-L, Li X-Q, Cao G-X, Yuan F, Dong Y, Li Z. A novel photoswitchable enzyme cascade for powerful signal amplification in versatile bioassays. Chem Commun. 2017;53:11165–8.

    Article  CAS  Google Scholar 

  18. Wang G-L, Jin L-Y, Dong Y-M, Wu X-M, Li Z-J. Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosens Bioelectron. 2015;64:523–9.

    Article  CAS  Google Scholar 

  19. Wang G-L, Xu X-F, Qiu L, Dong Y-M, Li Z-J, Zhang C. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl Mater Interfaces. 2014;6:6434–42.

    Article  CAS  Google Scholar 

  20. Liu Y, Zhou M, Cao W, Wang X, Wang Q, Li S, et al. Light-responsive metal–organic framework as an oxidase mimic for cellular glutathione detection. Anal Chem. 2019;91:8170–5.

    Article  CAS  Google Scholar 

  21. Du J, Wang J, Huang W, Deng Y, He Y. Visible light-activatable oxidase mimic of 9-mesityl-10-methylacridinium ion for colorimetric detection of biothiols and logic operations. Anal Chem. 2018;90:9959–65.

    Article  CAS  Google Scholar 

  22. Srivastava V, Singh PP. Eosin Y catalysed photoredox synthesis : a review. RSC Adv. 2017;7:31377–92.

    Article  CAS  Google Scholar 

  23. Yan DM, Zhao QQ, Rao L, Chen JR, Xiao WJ. Eosin Y as a redox catalyst and photosensitizer for sequential benzylic C-H amination and oxidation. Chem-Eur J. 2018;24:16895–901.

    Article  CAS  Google Scholar 

  24. Zhao M, Wang J, Yu H, He Y, Duan T. A highly selective and sensitive colorimetric assay for specific recognition element-free detection of uranyl ion. Sensors Actuators B Chem. 2020;307:127664.

    Article  CAS  Google Scholar 

  25. Yan DM, Chen JR, Xiao WJ. New roles for photoexcited eosin Y in photochemical reactions. Angew Chem Int Ed. 2019;58:378–80.

    Article  CAS  Google Scholar 

  26. Durga P, Burkhard K. Synthetic applications of eosin Y in photoredox catalysis. Chem Commun. 2014;50:6688–99.

    Article  Google Scholar 

  27. Kang X, Yu Y, Bao Y, Cai W, Cui S. Real time quantification of the chemical cross-link density of a hydrogel by in situ UV-vis spectroscopy. Polym Chem. 2015;6:4252–7.

    Article  CAS  Google Scholar 

  28. Marquez LA, Dunford HB. Mechanism of the oxidation of 3,5,3,5-tetramethylbenzidine by myeloperoxidase determined by transient- and steady-state kinetics. Biochemistry. 1997;36:9349–55.

    Article  CAS  Google Scholar 

  29. Du J, Wang J, Deng Y, He Y. Plasmonic hot electron transfer-induced multicolor MoO3-x -based chromogenic system for visual and colorimetric determination of silver(I). Anal Bioanal Chem. 2020;187:120.

    CAS  Google Scholar 

  30. Wang W, Kang S-Z, Wang D, Li X, Qin L, Mu J. Synergistic effect between Eosin Y and rhodamine B on a photoelectrode coated with Pt nanoparticle-decorated graphene. RSC Adv. 2015;5:105969–79.

    Article  CAS  Google Scholar 

  31. Jiang Z, Li H, Deng Y, He Y. Blue light-gated reversible silver nanozyme reaction networks that achieve life-like adaptivity. ACS Sustain Chem Eng. 2020;8:5076–81.

    Article  CAS  Google Scholar 

  32. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc. 2018;13:1506–20.

    Article  CAS  Google Scholar 

  33. Santini C, Pellei M, Lobbia GG, Alidori S, Berrettini M, Fedeli D. New (diphenylphosphane)benzoic acid copper(I) derivatives of “scorpionate” ligands with superoxide scavenging activity. Inorg Chim Acta. 2004;357:3549–55.

    Article  CAS  Google Scholar 

  34. Shannon RJ, Blitz MA, Goddard A, Heard DE. Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nat Chem. 2013;5:745–9.

    Article  CAS  Google Scholar 

  35. Wandt J, Jakes P, Granwehr J, Gasteiger HA, Eichel RA. Singlet oxygen formation during the charging process of an aprotic lithium-oxygen battery. Angew Chem Int Ed. 2016;55:6892–5.

    Article  CAS  Google Scholar 

  36. Zhang J, Wu S, Lu X, Wu P, Liu J. Lanthanide-boosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. ACS Nano. 2019;13:14152–61.

    Article  CAS  Google Scholar 

  37. Wang H, Jiang S, Chen S, Li D, Zhang X, Shao W, et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Adv Mater. 2016;28:6940–5.

    Article  CAS  Google Scholar 

  38. Suzuki A, Ivandini TA, Kamiya A, Nomura S, Yamanuki M, Matsumoto K, et al. Direct electrochemical detection of sodium azide in physiological saline buffers using highly boron-doped diamond electrodes. Sensors Actuators B Chem. 2007;120:500–7.

    Article  CAS  Google Scholar 

  39. Sezgintürk MK, Göktuğ T, Dinçkaya E. A biosensor based on catalase for determination of highly toxic chemical azide in fruit juices. Biosens Bioelectron. 2005;21:684–8.

    Article  CAS  Google Scholar 

  40. Miyoshi N, Ueda M, Fuke K, Tanimoto Y, Itoh M, Tomita G. Lifetime of singlet oxygen and quenching by NaN3 in mixed solvents. Zeitschrift für Naturforschung B. 1982;37:649–52.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Research Program of State Key Laboratory of NBC Protection for Civilian (SKLNBC2018-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haili Yu or Yi He.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Research involving human participants and/or animals

The authors declare that no human participants and/or animals were involved in this research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yu, H. & He, Y. Eosin Y as a high-efficient photooxidase mimic for colorimetric detection of sodium azide. Anal Bioanal Chem 412, 7595–7602 (2020). https://doi.org/10.1007/s00216-020-02895-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02895-z

Keywords

Navigation