Skip to main content

Advertisement

Log in

Transcranial Direct Current Stimulation (tDCS) Induces Analgesia in Rats with Neuropathic Pain and Alcohol Abstinence

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuromodulatory techniques have been studied to treat drug addiction or compulsive eating as well as different chronic pain conditions, such as neuropathic and inflammatory pain in the clinical and preclinical settings. In this study, we aimed to investigate the effect of transcranial direct current stimulation (tDCS) on the association of alcohol withdrawal with neuropathic pain based on nociceptive and neurochemical parameters in rats. Thirty-six adult male Wistar rats were randomized into five groups: control, neuropathic pain, neuropathic pain + tDCS, neuropathic pain + alcohol, and neuropathic pain + alcohol + tDCS. The neuropathic pain model was induced by chronic constriction injury (CCI) to the sciatic nerve. Rats were then exposed to alcohol (20%) by oral gavage administration for 15 days (beginning 24 h after CCI). tDCS was started on the 17th day after surgery and lasted for 8 consecutive days. The nociceptive test (hot plate) was performed at baseline, 16 days after CCI, and immediately and 24 h after the last session of tDCS. Rats were killed by decapitation, and structures were removed and frozen for biochemical analysis (nerve growth factor and interleukin (IL-1α, IL-1β, and IL-10 measurements). Neuropathy-induced thermal hyperalgesia was reversed by tDCS, an effect that was delayed by alcohol abstinence. In addition, tDCS treatment induced modulation of central levels of IL-1α, IL-1ß, and IL-10 and neurotrophic growth factor. We cannot rule out that the antinociceptive effect of tDCS could be related to increased central levels of IL-1α and IL-10. Therefore, tDCS may be a promising non-pharmacological therapeutic approach for chronic pain treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cohen SP, Mao J (2014) Neuropathic pain: mechanisms and their clinical implications. BMJ. https://doi.org/10.1136/bmj.f7656

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chang SL, Huang W, Han H, Sariyer IK (2019) Binge-like exposure to ethanol enhances morphine’s anti-nociception in B6 mice. Front Psychiatry. https://doi.org/10.3389/fpsyt.2018.00756

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shield KD, Parry C, Rehm J (2013) Chronic diseases and conditions related to alcohol use. Alcohol Res 35:155

    PubMed  Google Scholar 

  4. Yamada A, Koga K, Kume K, Ohsawa M, Furue H (2018) Ethanol-induced enhancement of inhibitory synaptic transmission in the rat spinal substantia gelatinosa. Mol Pain. https://doi.org/10.1177/1744806918817969

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thompson T, Oram C, Correll CU, Tsermentseli S, Stubbs B (2017) Analgesic effects of alcohol: a systematic review and meta-analysis of controlled experimental studies in healthy participants. J Pain. https://doi.org/10.1016/j.jpain.2016.11.009

    Article  PubMed  Google Scholar 

  6. Wilens TE (2004) Attention-deficit/hyperactivity disorder and the substance use disorders: the nature of the relationship, subtypes at risk, and treatment issues. Psychiatr Clin North Am. https://doi.org/10.1016/S0193-953X(03)00113-8

    Article  PubMed  Google Scholar 

  7. Natraviola E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F (2012) Pain relief produces negative reinforcement through activation of mesolimbic reward–valuation circuitry. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1214605109

  8. Yu W, Hwa LS, Makhijani VH, Besheer J, Kash TL (2019) Chronic inflammatory pain drives alcohol drinking in a sex-dependent manner for C57BL/6J mice. Alcohol. https://doi.org/10.1016/j.alcohol.2018.10.002

    Article  PubMed  Google Scholar 

  9. Kerns RT, Ravindranathan A, Hassan S, Cage MP, York T, Sikela JM, Williams RW, Miles MF (2005) Ethanol-responsive brain region expression networks: implications for behavioral responses to acute ethanol in DBA/2J versus C57BL/6J mice. J Neurosci. https://doi.org/10.1523/JNEUROSCI.4372-04.2005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gatch MB (2009) Ethanol withdrawal and hyperalgesia. Curr Drug Abuse Rev. https://doi.org/10.2174/1874473710902010041

    Article  PubMed  Google Scholar 

  11. Jochum T, Boettger MK, Burkhardt C, Juckel G, Bär K (2012) Increased pain sensitivity in alcohol withdrawal syndrome. Eur J Pain. https://doi.org/10.1016/j.ejpain.2009.11.008

    Article  Google Scholar 

  12. Riley JL, King C (2009) Self-report of alcohol use for pain in a multi-ethnic community sample. J Pain. https://doi.org/10.1016/j.jpain.2009.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brennan PL, Schutte KK, Moos RH (2005) Pain and use of alcohol to manage pain: prevalence and 3-year outcomes among older problem and non‐problem drinkers. Addiction.  https://doi.org/10.1111/j.1360-0443.2005.01074.x

  14. Mellion M, Gilchrist JM, De La Monte S (2011) Alcohol-related peripheral neuropathy: nutritional, toxic, or both? Muscle Nerve. https://doi.org/10.1002/mus.21946

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schunck RVA, Torres ILS, Laste G, De Souza A, Macedo IC, Valle MTC, Leal MB (2015) Protracted alcohol abstinence induces analgesia in rats: possible relationships with BDNF and interleukin-10. Pharmacol Biochem Behav. https://doi.org/10.1016/j.pbb.2015.05.011

    Article  PubMed  Google Scholar 

  16. Egli M, Koob GF, Edwards S (2012) Alcohol dependence as a chronic pain disorder. Neurosci Biobehav Rev. https://doi.org/10.1016/j.neubiorev.2012.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li J, Fu C, Liu H, Fu R, Zuo W, Kang S, Chen P, Gregor D, Paulose R, Bekker A, Ye J (2017) Electroacupuncture attenuates hyperalgesia in rats withdrawn from chronic alcohol drinking via habenular mu opioid receptors. Alcoholism. https://doi.org/10.1111/acer.13332

    Article  PubMed  Google Scholar 

  18. Castillo RC, MacKenzie EJ, Wegener ST, Bosse MJ, Group LS (2006) Prevalence of chronic pain seven years following limb threatening lower extremity trauma. Pain. https://doi.org/10.1016/j.pain.2006.04.020

    Article  PubMed  Google Scholar 

  19. Holmes A, Williamson O, Hogg M, Arnold C, Prosser A, Clements J, O’Donnell M (2010) Predictors of pain severity 3 months after serious injury. Pain Med. https://doi.org/10.1111/j.1526-4637.2010.00890.x

    Article  PubMed  Google Scholar 

  20. Gilpin NW, Koob GF (2008) Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res 31:185

    Google Scholar 

  21. Koob GF (2003) Alcoholism: allostasis and beyond.  Alcohol Clin Exp Res. https://doi.org/10.1097/01.alc.0000057122.36127.c2

  22. Stewart S, Finn PR, Pihl RO (1995) A dose–response study of the effects of alcohol on the perception of pain and discomfort due to electric shock in men at high familial-genetic risk for alcoholism. Psychopharmacology. https://doi.org/10.1007/bf02246289

    Article  PubMed  Google Scholar 

  23. Katon W, Egan K, Miler D (1985) Chronic pain: lifetime psychiatric diagnoses and family history. Am J Psychiatry. https://doi.org/10.1176/ajp.142.10.1156

    Article  PubMed  Google Scholar 

  24. Filho PRM, Vercelino R, Cioato SG, Medeiros LF, de Oliveira C, Scarabelot VL, Torres ILS (2016) Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: long-lasting effect. Prog Neuropsychopharmacol Biol Psychiatry. https://doi.org/10.1016/j.pnpbp.2015.06.016

    Article  PubMed  Google Scholar 

  25. Lopes BC, Medeiros LF, de Souza VS, Cioato SG, Medeiros HR, Regner GG, de Oliveira CL, Frengi F, Caumo W, Torres ILS (2020) Transcranial direct current stimulation combined with exercise modulates the inflammatory profile and hyperalgesic response in rats subjected to a neuropathic pain model: long-term effects. Brain Stimulation. https://doi.org/10.1016/j.brs.2020.02.025

    Article  PubMed  Google Scholar 

  26. Laste G, Caumo W, Adachi LNS, Rozisky JR, De Macedo IC, Filho PRM, Torres ILS (2012) After-effects of consecutive sessions of transcranial direct current stimulation (tDCS) in a rat model of chronic inflammation. Exp Brain Res. https://doi.org/10.1007/s00221-012-3149-x

    Article  PubMed  Google Scholar 

  27. Lehnert M, Kovacs EJ, Molina PE, Relja B (2014) Modulation of inflammation by alcohol exposure. Mediat Inflamm. https://doi.org/10.1155/2014/283756

    Article  Google Scholar 

  28. Molina PE, Happel KI, Zhang P, Kolls JK, Nelson S (2010) Focus on: alcohol and the immune system. Alcohol Res Health. 33, 97

  29. Brietzke AP, Zortea M, Carvalho F, Sanches PRS, Silva JDP, da Torres IL, Caumo W (2019) Large treatment effect with extended home-based transcranial direct current stimulation over dorsolateral prefrontal cortex in fibromyalgia: a proof of concept sham-randomized clinical study. J Pain. https://doi.org/10.1016/j.jpain.2019.06.013

    Article  PubMed  Google Scholar 

  30. Da Silva Moreira SF, Medeiros LF, De Souza A, De Oliveira C, Scarabelot VL, Fregni F, Torres ILS (2016) Transcranial direct current stimulation (tDCS) neuromodulatory effects on mechanical hyperalgesia and cortical BDNF levels in ovariectomized rats. Life Sci. https://doi.org/10.1016/j.lfs.2015.10.011

    Article  PubMed  Google Scholar 

  31. Nakamura-Palacios EM, Lopes IBC, Souza RA, Klauss J, Batista EK, Conti CL, de Souza RSM (2016) Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction. J Neural Transm. https://doi.org/10.1007/s00702-016-1559-9

    Article  PubMed  Google Scholar 

  32. de Oliveira C, de Freitas JS, Macedo IC, Scarabelot VL, Ströher R, Santos DS, Torres ILS (2019) Transcranial direct current stimulation (tDCS) modulates biometric and inflammatory parameters and anxiety-like behavior in obese rats. Neuropeptides. https://doi.org/10.1016/j.npep.2018.09.006

    Article  PubMed  Google Scholar 

  33. Song S, Zilverstand A, Gui W, Li H, Jie, Zhou X (2019) Effects of single-session versus multi-session non-invasive brain stimulation on craving and consumption in individuals with drug addiction, eating disorders or obesity: a meta-analysis. Brain Stimulation. https://doi.org/10.1016/j.brs.2018.12.975

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Paulus W (2017) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128:56–92. https://doi.org/10.1016/j.clinph.2016.10.087

    Article  PubMed  Google Scholar 

  35. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, Pascual-Leone A (2008) Transcranial direct current stimulation: state of the art 2008. Brain Stimulation. https://doi.org/10.1016/j.brs.2008.06.004

    Article  PubMed  Google Scholar 

  36. da Graca-Tarragó M, Lech M, Angoleri LDM, Santos DS, Deitos A, Brietzke AP, Caumo W (2019) Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: a randomized, factorial, sham-controlled study. J Pain Res. https://doi.org/10.2147/JPR.S181019

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cioato SG, Medeiros LF, Filho PRM, Vercelino R, De Souza A, Scarabelot VL, Torres ILS (2016) Long-lasting effect of transcranial direct current stimulation in the reversal of hyperalgesia and cytokine alterations induced by the neuropathic pain model. Brain Stimulation. https://doi.org/10.1016/j.brs.2015.12.001

    Article  PubMed  Google Scholar 

  38. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2013) Improving bioscience research reporting: the arrive guidelines for reporting animal research. Animals. https://doi.org/10.3390/ani4010035

    Article  Google Scholar 

  39. Spezia Adachi LN, Caumo W, Laste G, Fernandes Medeiros L, Rozisky R, De Souza J, Torres A, I. L. S (2012) Reversal of chronic stress-induced pain by transcranial direct current stimulation (tDCS) in an animal model. Brain Res. https://doi.org/10.1016/j.brainres.2012.10.009

    Article  PubMed  Google Scholar 

  40. Takano Y, Yokawa T, Masuda A, Niimi J, Tanaka S, Hironaka N (2011) A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI. Neurosci Lett. https://doi.org/10.1016/j.neulet.2011.01.004

    Article  PubMed  Google Scholar 

  41. Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, Fregni F (2008) Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. https://doi.org/10.1016/j.drugalcdep.2007.06.011

    Article  PubMed  Google Scholar 

  42. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. https://doi.org/10.1016/0304-3959(88)90209-6

    Article  PubMed  Google Scholar 

  43. Guzman-silva MA, Pollastri CE, Augusto J, Pantaleão S, Carolina A, Carvalho B, De, Boaventura GT (2008) Tramadol minimizes potential pain during post-oophorectomy in Wistar rats.  Aatex, (14), 91–92

  44. Overstreet DH, Knapp DJ, Breese GR (2002) Accentuated decrease in social interaction in rats subjected to repeated ethanol withdrawals.  Alcohol Clin Exp Res. https://doi.org/10.1097/01.ALC.0000023983.10615.D7

  45. Caggiula AR, Perkins KA, Saylor S, Epstein LH (1995) Different methods of assessing nicotine-induced antinociception may engage different neural mechanisms. Psychopharmacology. https://doi.org/10.1007/BF02246552

    Article  PubMed  Google Scholar 

  46. Ossipov MH, Kovelowski CJ, Nichols ML, Hruby VJ, Porreca F (1995) Characterization of supraspinal antinociceptive actions of opiod delta agonists in the rat. Pain. https://doi.org/10.1016/0304-3959(94)00231-3

    Article  PubMed  Google Scholar 

  47. Rubinstein M, Mogil JS, Japon M, Chan EC, Allen RG, Low MJ (2002) Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.93.9.3995

    Article  PubMed  Google Scholar 

  48. Spindola HM, Servat L, Denny C, Rodrigues RAF, Eberlin MN, Cabral E, Foglio MA (2010) Antinociceptive effect of geranylgeraniol and 6alpha,7beta-dihydroxyvouacapan-17beta-oate methyl ester isolated from Pterodon pubescens Benth. BMC Pharmacol. https://doi.org/10.1186/1471-2210-10-1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Woolfe G, Macdonald A (1944) The evaluation of the analgesic action of pethidine hydrochloride (Demerol). J Pharmacol Exp Ther

  50. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  Google Scholar 

  51. Emamuzo ED, Miniakiri SI, Tedwin EJO, Ufouma O, Lucky M (2010) Analgesic and anti—inflammatory activities of the ethanol extract of the leaves of Helianthus Annus in Wistar rats. Asian Pac J Trop Med. https://doi.org/10.1016/S1995-7645(10)60083-1

    Article  Google Scholar 

  52. Gatch MB, Lal H (1999) Effects of ethanol and ethanol withdrawal on nociception in rats. Alcoholism. https://doi.org/10.1111/j.1530-0277.1999.tb04118.x

    Article  PubMed  Google Scholar 

  53. Souza A, Martins DF, Medeiros LF, Nucci-Martins C, Martins TC, Siteneski A, Torres ILS (2018) Neurobiological mechanisms of antiallodynic effect of transcranial direct current stimulation (tDCS) in a mice model of neuropathic pain. Brain Res. https://doi.org/10.1016/j.brainres.2017.12.005

    Article  PubMed  Google Scholar 

  54. Davies M (2003) The role of GABAA receptors in mediating the effects of alcohol in the central nervous system. J Psychiatry  Neurosci 28:263

    Google Scholar 

  55. Rao PSS, Bell RL, Engleman EA, Sari Y (2015) Targeting glutamate uptake to treat alcohol use disorders. Front Neurosci. https://doi.org/10.3389/fnins.2015.00144

    Article  PubMed  PubMed Central  Google Scholar 

  56. LeMarquand D, Pihl RO, Benkelfat C (1994) Serotonin and alcohol intake, abuse, and dependence: clinical evidence. Biol Psychiat. https://doi.org/10.1016/0006-3223(94)90630-0

    Article  PubMed  Google Scholar 

  57. McBride WJ, Murphy JM, Yoshimoto K, Lumeng L, Li T (1993) Serotonin mechanisms in alcohol drinking behavior. Drug Dev Res. https://doi.org/10.1002/ddr.430300309

    Article  Google Scholar 

  58. Font L, Luján M, Pastor R (2013) Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde. Front Behav Neurosci. https://doi.org/10.3389/fnbeh.2013.00093

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gatch MB (1999) Effects of benzodiazepines on acute and chronic ethanol-induced nociception in rats. Alcoholism. https://doi.org/10.1111/j.1530-0277.1999.tb04068.x

    Article  PubMed  Google Scholar 

  60. Mogil JS, Marek P, Yirmiya R, Balian H, Sadowski B, Taylor AN, Liebeskind JC (1993) Antagonism of the non-opioid component of ethanol-induced analgesia by the NMDA receptor antagonist MK-801. Brain Res. https://doi.org/10.1016/0006-8993(93)90251-h

    Article  PubMed  Google Scholar 

  61. Khanna JM, Mayer JM, Lê DA, Kalant H (1984) Differential response to ethanol, pentobarbital and morphine in mice selectively bred for ethanol sensitivity. Alcohol. https://doi.org/10.1016/0741-8329(84)90029-6

    Article  PubMed  Google Scholar 

  62. Newman LM, Curran MA, Becker GL (1986) Effects of chronic alcohol intake on anesthetic responses to diazepam and thiopental in rats. Anesthesiology. https://doi.org/10.1097/00000542-198608000-00012

    Article  PubMed  Google Scholar 

  63. Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science. https://doi.org/10.1126/science.2467382

    Article  PubMed  Google Scholar 

  64. Hoffman PL, Rabe CS, Moses F, Tabakoff B (1989) N-methyl-D-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production. J Neurochem. https://doi.org/10.1111/j.1471-4159.1989.tb07280.x

    Article  PubMed  Google Scholar 

  65. Le Bars D, Gozariu M, Cadden W (2001) Animal models of nociception. Pharmacol Rev 53:597

    PubMed  Google Scholar 

  66. Shumilla JA, Liron T, Mochly-Rosen D, Kendig JJ, Sweitzer SM (2005) Ethanol withdrawal-associated allodynia and hyperalgesia: age-dependent regulation by protein kinase C epsilon and gamma isoenzymes. J Pain. https://doi.org/10.1016/j.jpain.2005.03.005

    Article  PubMed  Google Scholar 

  67. Fu R, Gregor D, Peng Z, Li J, Bekker A, Ye JH (2015) Chronic intermittent voluntary alcohol drinking induces hyperalgesia in Sprague-Dawley rats. Int J Physiol Pathophysiol Pharmacol 7:136

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li J, Chen P, Han X, Zuo W, Mei Q, Bian EY, Umeugo J, Ye J (2019) Differences between male and female rats in alcohol drinking, negative affects and neuronal activity after acute and prolonged abstinence. Int J Physiol Pathophysiol Pharmacol 11:163

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Duarte R, McNeill A, Drummond G, Tiplady B (2008) Comparison of the sedative, cognitive, and analgesic effects of nitrous oxide, sevoflurane, and ethanol. Br J Anaesth. https://doi.org/10.1093/bja/aem369

    Article  PubMed  Google Scholar 

  70. Perrino AC Jr, Ralevski E, Acampora G, Edgecombe J, Limoncelli D, Petrakis IL (2008) Ethanol and pain sensitivity: effects in healthy subjects using an acute pain paradigm. Alcohol Clin Exp Res. https://doi.org/10.1111/j.1530-0277.2008.00653.x

    Article  PubMed  Google Scholar 

  71. Saddler JM, James MF, Harington AP (1985) Naloxone does not reverse ethanol analgesia in man. Clin Exp Pharmacol Physiol. https://doi.org/10.1111/j.1440-1681.1985.tb00883.x

    Article  PubMed  Google Scholar 

  72. Horn-Hofmann C, Buscher P, Lautenbacher S, Wolstein J (2015) The effect of nonrecurring alcohol administration on pain perception in humans: a systematic review. J Pain Res 8:175–187. https://doi.org/10.2147/JPR.S79618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chastain G (2006) Alcohol, neurotransmitter systems, and behavior. J Gen Psychol. https://doi.org/10.3200/GENP.133.4.329-335

    Article  PubMed  Google Scholar 

  74. Mika J, Korostynski M, Kaminska D, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, Przewlocka B (2008) Interleukin-1alpha has antiallodynic and antihyperalgesic activities in a rat neuropathic pain model. Pain. https://doi.org/10.1016/j.pain.2008.02.015

    Article  PubMed  Google Scholar 

  75. Dai W, Sun J, Li C, Mao W, Huang Y, Zhao Z, Zhang Y, Lü N (2019) Involvement of interleukin-10 in analgesia of electroacupuncture on incision pain. Evid Based Complementary Altern Med. https://doi.org/10.1155/2019/8413576

    Article  Google Scholar 

  76. Stemkowski PL, Garcia-Caballero A, Gadotti VM, M’Dahoma S, Chen L, Souza IA, Zamponi GW (2017) Identification of interleukin-1 beta as a key mediator in the upregulation of Cav3.2–USP5 interactions in the pain pathway. Mol Pain. https://doi.org/10.1177/1744806917724698

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ren K, Torres R (2009) Role of interleukin-1β during pain and inflammation. Brain Res Rev. https://doi.org/10.1016/j.brainresrev.2008.12.020

    Article  PubMed  Google Scholar 

  78. Souter AJ, Garry MG (2000) Spinal interleukin-1β reduces inflammatory pain. Pain. https://doi.org/10.1016/S0304-3959(99)00315-2

    Article  PubMed  Google Scholar 

  79. Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR, Tuszynski MH (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci. https://doi.org/10.1523/jneurosci.2594-09.2009

    Article  PubMed  PubMed Central  Google Scholar 

  80. Miller MW, Mooney SM (2004) Chronic exposure to ethanol alters neurotrophin content in the basal forebrain-cortex system in the mature rat: effects on autocrine-paracrine mechanisms. J Neurobiol. https://doi.org/10.1002/neu.20059

    Article  PubMed  Google Scholar 

  81. Gericke CA, Schulte-Herbrüggen O, Arendt T, Hellweg R (2006) Chronic alcohol intoxication in rats leads to a strong but transient increase in NGF levels in distinct brain regions. J Neural Transm. https://doi.org/10.1007/s00702-005-0361-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Biomedical Engineering group from the Hospital de Clínicas de Porto Alegre (HCPA) for the development of the tDCS equipment used in this study.

Funding

This work was supported by the following Brazilian funding agencies: Brazilian Federal Agency for Support and Evaluation of Graduate Education—CAPES/MD-PhD (D.S. Santos, B.C. Lopes, L.S. Santos); National Council for Scientific and Technological Development—CNPq (Dr. I.L.S. Torres, Dr. W. Caumo); Graduate Research Group of the Hospital de Clínicas de Porto Alegre—GPPG (I.L.S. Torres, Grant No.: 15–0501) MCT/FINEP—COENG/2013; and the Support Program for Emerging Nuclei PRONEM (Paulo Roberto Sanches, Grant No. 16/2551-0000249-5).

Author information

Authors and Affiliations

Authors

Contributions

DSS and ILST were responsible for the study concept and design. DSS, BCL, LSS, AS, and JA contributed to the acquisition of data. DSS, LFM, JA, and ILST were responsible for data analysis. DSS, LFM, FF, WC, and ILST drafted the manuscript. All authors revised and edited the manuscript as well as approved the final version.

Corresponding author

Correspondence to Iraci L. S. Torres.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest. 

Ethical Approval

All experiments and procedures were approved by the Institutional Animal Care and Use Committee of the Hospital de Clínicas de Porto Alegre/HCPA (GPPG-HCPA protocol no. 15.0501). The experimental protocol complied with the ethical and methodological standards of the ARRIVE guidelines (Kilkenny et al. 2013).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, D.S., Lopes, B.C., Medeiros, L.F. et al. Transcranial Direct Current Stimulation (tDCS) Induces Analgesia in Rats with Neuropathic Pain and Alcohol Abstinence. Neurochem Res 45, 2653–2663 (2020). https://doi.org/10.1007/s11064-020-03116-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03116-w

Keywords

Navigation