Skip to main content
Log in

Targeting STAT proteins via computational analysis in colorectal cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide making it a serious global challenge. CRC progression results from dysregulated cytoplasmic transcription factors, including signal transducer and activator of transcription (STAT) proteins that are involved in JAK-STAT pathway. The STAT proteins contain a conserved SH2 domain that facilitates the initiation of STAT activation via binding to tyrosine motifs followed by STAT dimerization. The STAT proteins include STAT1, STAT2 and STAT3 which all facilitate therapeutic targets for many drugs, since they are associated with pathogenesis in various cancers such as CRC. Genistein is an efficient chemopreventive phytochemical drug against CRC. The current investigation presents a computational study performed to investigate the molecular interaction between STAT1, STAT2 and STAT3 proteins with genistein. The molecular dynamic simulation was conducted for STAT2 protein. The studies from molecular docking revealed that the interaction of STAT proteins and genistein is predicted to be effective with better binding energies. Furthermore, targeting STAT3 could be an efficient therapeutic target and understanding the interaction between STAT3 and genistein can help to contribute to a better inhibition process for CRC progression. Treatment with genistein led to significant suppression of cell proliferation and STAT3 protein expression in both CRC (HCT 116 and HT-29) cell lines. This further provides development of efficient STAT inhibitors with better potency and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

MDS:

Molecular dynamic simulation

MM:

Molecular mechanics

NMR:

Nuclear magnetic resonance

PDB:

Protein data bank

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

STAT:

Signal transducer and activator of transcription

References

  1. Albai O, Frandes M, Timar B, Paun DL, Roman D, Timar R (2020) Long-term risk of malignant neoplastic disorders in type 2 diabetes mellitus patients with metabolic syndrome. Diabetes Metab Syndr Obes 13:1317–1326. https://doi.org/10.2147/DMSO.S243263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu K, Lai M, Wang S, Zheng K, Xie S, Wang X (2020) Construction of a CXC chemokine-based prediction model for the prognosis of colon cancer. Biomed Res Int 2020:6107865. https://doi.org/10.1155/2020/6107865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet 394:1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0

    Article  PubMed  Google Scholar 

  4. Laissue P (2019) The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 18:5. https://doi.org/10.1186/s12943-019-0938-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao Y, Hu X, Zuo X, Wang M (2018) Chemopreventive effects of some popular phytochemicals on human colon cancer: a review. Food Funct 9:4548–4568. https://doi.org/10.1039/c8fo00850g

    Article  CAS  PubMed  Google Scholar 

  6. Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M (2020) Dietary phytochemicals in colorectal cancer prevention and treatment: a focus on the molecular mechanisms involved. Biotechnol Adv 38:107322. https://doi.org/10.1016/j.biotechadv.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  7. Lee DY, Yun SM, Song MY, Jung K, Kim EH (2020) Cyanidin chloride induces apoptosis by inhibiting NF-kappaB signaling through activation of Nrf2 in colorectal cancer cells. Antioxidants (Basel). https://doi.org/10.3390/antiox9040285

    Article  PubMed  PubMed Central  Google Scholar 

  8. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635. https://doi.org/10.1126/science.277.5332.1630

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Ahn KS, Kim C, Shanmugam MK, Siveen KS, Arfuso F, Samym RP, Deivasigamanim A, Lim LH, Wang L, Goh BC, Kumar AP, Hui KM, Sethi G (2016) Nimbolide-induced oxidative stress abrogates STAT3 signaling cascade and inhibits tumor growth in transgenic adenocarcinoma of mouse prostate model. Antioxid Redox Signal 24:575–589. https://doi.org/10.1089/ars.2015.6418

    Article  CAS  PubMed  Google Scholar 

  10. Loh CY, Arya A, Naema AF, Wong WF, Sethi G, Looi CY (2019) Signal transducer and activator of transcription (STATs) proteins in cancer and inflammation: functions and therapeutic implication. Front Oncol 9:48. https://doi.org/10.3389/fonc.2019.00048

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tanaka A, Zhou Y, Ogawa M, Shia J, Klimstra DS, Wang JY, Roehrl MH (2020) STAT1 as a potential prognosis marker for poor outcomes of early stage colorectal cancer with microsatellite instability. PLoS ONE 15:e0229252. https://doi.org/10.1371/journal.pone.0229252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gamero AM, Young MR, Mentor-Marcel R, Bobe G, Scarzello AJ, Wise J, Colburn NH (2010) STAT2 contributes to promotion of colorectal and skin carcinogenesis. Cancer Prev Res (Phila) 3:495–504. https://doi.org/10.1158/1940-6207.CAPR-09-0105

    Article  CAS  Google Scholar 

  13. Masuda M, Suzui M, Yasumatu R, Nakashima T, Kuratomi Y, Azuma K, Tomita K, Komiyama S, Weinstein IB (2002) Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res 62:3351–3355

    CAS  PubMed  Google Scholar 

  14. Benekli M, Xia Z, Donohue KA, Ford LA, Pixley LA, Baer MR, Baumann H, Wetzler M (2002) Constitutive activity of signal transducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease-free survival. Blood 99:252–257. https://doi.org/10.1182/blood.v99.1.252

    Article  CAS  PubMed  Google Scholar 

  15. Horiguchi A, Oya M, Shimada T, Uchida A, Marumo K, Murai M (2002) Activation of signal transducer and activator of transcription 3 in renal cell carcinoma: a study of incidence and its association with pathological features and clinical outcome. J Urol 168:762–765

    Article  CAS  Google Scholar 

  16. Corvinus FM, Orth C, Moriggl R, Tsareva SA, Wagner S, Pfitzner EB, Baus D, Kaufmann R, Huber LA, Zatloukal K, Beug H, Ohlschlager P, Schutz A, Halbhuber KJ, Friedrich K (2005) Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia 7:545–555

    Article  CAS  Google Scholar 

  17. Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A (2017) Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-kappaB/slug/E-cadherin pathway. BMC Cancer 17:813. https://doi.org/10.1186/s12885-017-3829-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  19. Dariya B, Behera SK, Srivani G, Farran B, Alam A, Nagaraju GP (2020) Computational analysis of nuclear factor-κB and resveratrol in colorectal cancer. J Biomol Struct Dynam. https://doi.org/10.1080/07391102.2020.1757511

    Article  Google Scholar 

  20. Chiu SW, Pandit SA, Scott HL, Jakobsson E (2009) An improved united atom force field for simulation of mixed lipid bilayers. J Phys Chem B 113:2748–2763

    Article  CAS  Google Scholar 

  21. Kaistha SD, Sinha R (2009) Homology modeling of phosphoryl thymidine kinase of enterohemorrhagic Escherichia coli OH: 157. Bioinformation 3(6):240–243

    Article  Google Scholar 

  22. Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers (Basel) 6:926–957. https://doi.org/10.3390/cancers6020926

    Article  CAS  Google Scholar 

  23. van Waalwijk van Doorn-Khosrovani SB, Janssen J, Maas LM, Godschalk RW, Nijhuis JG, van Schooten FJ (2007) Dietary flavonoids induce MLL translocations in primary human CD34+ cells. Carcinogenesis 28:1703–1709

    Article  CAS  Google Scholar 

  24. Treeck O, Lattrich C, Springwald A, Ortmann O (2010) Estrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells. Breast Cancer Res Treat 120:557–565

    Article  CAS  Google Scholar 

  25. Jiang Y, Gong P, Madak-Erdogan Z, Martin T, Jeyakumar M, Carlson K, Khan I, Smillie TJ, Chittiboyina AG, Rotte SC (2013) Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens. FASEB J 27:4406–4418

    Article  CAS  Google Scholar 

  26. Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, Leitman DC (2004) Estrogen receptor β inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Can Res 64:423–428

    Article  CAS  Google Scholar 

  27. Jiang X, Patterson NM, Ling Y, Xie J, Helferich WG, Shapiro DJ (2008) Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of breast cancer cells by immune cells. Endocrinology 149:5366–5373

    Article  CAS  Google Scholar 

  28. Kumi-Diaka J, Rodriguez R, Goudaze G (1998) Influence of genistein (4′, 5, 7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines. Biol Cell 90:349–354

    Article  CAS  Google Scholar 

  29. Spector LG, Xie Y, Robison LL, Heerema NA, Hilden JM, Lange B, Felix CA, Davies SM, Slavin J, Potter JD (2005) Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children's oncology group. Cancer Epidemiol Prev Biomarkers 14:651–655

    Article  CAS  Google Scholar 

  30. Azarova AM, Lin R-K, Tsai Y-C, Liu LF, Lin C-P, Lyu YL (2010) Genistein induces topoisomerase IIbeta-and proteasome-mediated DNA sequence rearrangements: implications in infant leukemia. Biochem Biophys Res Commun 399:66–71

    Article  CAS  Google Scholar 

  31. Chang HC, Doerge DR (2000) Dietary genistein inactivates rat thyroid peroxidase in vivo without an apparent hypothyroid effect. Toxicol Appl Pharmacol 168:244–252

    Article  CAS  Google Scholar 

  32. Doerge DR, Sheehan DM (2002) Goitrogenic and estrogenic activity of soy isoflavones. Environ Health Perspect 110:349–353

    Article  CAS  Google Scholar 

  33. Divi RL, Chang HC, Doerge DR (1997) Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action. Biochem Pharmacol 54:1087–1096

    Article  CAS  Google Scholar 

  34. Ebmeier CC, Anderson RJ (2004) Human thyroid phenol sulfotransferase enzymes 1A1 and 1A3: activities in normal and diseased thyroid glands, and inhibition by thyroid hormones and phytoestrogens. J Clin Endocrinol Metab 89:5597–5605

    Article  CAS  Google Scholar 

  35. Brahmbhatt S, Brahmbhatt RM, Boyages SC (2000) Thyroid ultrasound is the best prevalence indicator for assessment of iodine deficiency disorders: a study in rural/tribal schoolchildren from Gujarat (Western India). Eur J Endocrinol 143:37–46

    Article  CAS  Google Scholar 

  36. Tuli HS, Tuorkey MJ, Thakral F, Sak K, Kumar M, Sharma AK, Sharma U, Jain A, Aggarwal V, Bishayee A (2019) Molecular mechanisms of action of genistein in cancer: recent advances. Front Pharmacol 10:1336. https://doi.org/10.3389/fphar.2019.01336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A (2017) Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-κB/slug/E-cadherin pathway. BMC Cancer 17:1–10

    Article  CAS  Google Scholar 

  38. Singh-Gupta V, Zhang H, Banerjee S, Kong D, Raffoul JJ, Sarkar FH, Hillman GG (2009) Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int J Cancer 124:1675–1684. https://doi.org/10.1002/ijc.24015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Russo M, Russo GL, Daglia M, Kasi PD, Ravi S, Nabavi SF, Nabavi SM (2016) Understanding genistein in cancer: the “good” and the “bad” effects: a review. Food Chem 196:589–600

    Article  CAS  Google Scholar 

  40. Qi W, Weber CR, Wasland K, Savkovic SD (2011) Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer 11:1–9

    Article  CAS  Google Scholar 

  41. Zhang Z, Wang C-Z, Du G-J, Qi L-W, Calway T, He T-C, Du W, Yuan C-S (2013) Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int J Oncol 43:289–296

    Article  CAS  Google Scholar 

  42. Lee CK, Bluyssen HA, Levy DE (1997) Regulation of interferon-alpha responsiveness by the duration of Janus kinase activity. J Biol Chem 272:21872–21877. https://doi.org/10.1074/jbc.272.35.21872

    Article  CAS  PubMed  Google Scholar 

  43. Hamalainen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators Inflamm 2007:45673. https://doi.org/10.1155/2007/45673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157. https://doi.org/10.2174/157340911795677602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386. https://doi.org/10.1038/nri1604

    Article  CAS  PubMed  Google Scholar 

  46. Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychowska A, Plens-Galaska M, Wesoly J, Bluyssen HAR (2019) Direct inhibition of IRF-dependent transcriptional regulatory mechanisms associated with disease. Front Immunol 10:1176. https://doi.org/10.3389/fimmu.2019.01176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250. https://doi.org/10.1016/0092-8674(95)90311-9

    Article  CAS  PubMed  Google Scholar 

  48. Wen Z, Darnell JE Jr (1997) Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res 25:2062–2067. https://doi.org/10.1093/nar/25.11.2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Sudhana Saddala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dariya, B., Muppala, S., Srivani, G. et al. Targeting STAT proteins via computational analysis in colorectal cancer. Mol Cell Biochem 476, 165–174 (2021). https://doi.org/10.1007/s11010-020-03893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03893-6

Keywords

Navigation