Skip to main content
Log in

Evaluation of the extraction and stability of chlorophyll-rich extracts by supercritical fluid chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a rapid (less than 10 min) analytical method by reverse-phase supercritical fluid chromatography was developed with an isocratic mobile phase, enabling the separation of 11 compounds, chlorophyll a and b, pheophytin a and numerous allomers or epimers. This method was used to examine the stability of chlorophyll pigments of plant extracts obtained with various extraction methods including microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), pressurized liquid extraction (PLE) and ultrasound-assisted extraction (UAE), with ethanol as solvent or modifier. The effect of storage was studied for both liquid and dried extracts. Irrespective of the extraction method, the evaporation of the extracts induced partial degradation of the chlorophyll pigments. It was found that liquid extracts could be stored at 4 °C for 3 weeks without a dramatic change in allomer forms of chlorophylls. However, during this storage period, epimerization appears to be important, leading to a significant decrease in the chlorophyll b native form.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lafeuille JL, Lefèvre S, Lebuhotel J. Quantitation of chlorophylls and 22 of their colored degradation products in culinary aromatic herbs by HPLC-DAD-MS and correlation with color changes during the dehydration process. J Agric Food Chem. 2014;62:1926–35.

    CAS  PubMed  Google Scholar 

  2. Kao TH, Chen CJ, Chen BH. An improved high-performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz. Talanta. 2011;86:349–55.

    CAS  PubMed  Google Scholar 

  3. Yu Q, Li J, Fan L. Effect of drying methods on the microstructure, bioactivity substances, and antityrosinase activity of Asparagus stems. J Agric Food Chem. 2019;67:1537–45.

    CAS  PubMed  Google Scholar 

  4. Kaiser A, Brinkmann M, Carle R, Kammerer DR. Influence of thermal treatment on color, enzyme activities and antioxidant capacity of innovative paste like parsley products. J Agric Food Chem. 2012;60:3291–301.

    CAS  PubMed  Google Scholar 

  5. Susuki Y, Shioi Y. Identification of chlorophylls and carotenoids in major teas by high-performance liquid chromatography with photodiode array detection. J Agric Food Chem. 2003;51:5307–14.

    Google Scholar 

  6. Delpino-Rius A, Cosovanu D, Eras J, Vilaro F, Balcells M, Canela-Garoyoa R. A fast and reliable ultrahigh-performance liquid chromatography method to assess the fate of chlorophylls in teas and processed vegetable foodstuff. J Chromatogr A. 2018;1568:69–79.

    CAS  PubMed  Google Scholar 

  7. Kamffer Z, Bindon KA, Obertholster A. Optimization of a method for the extraction and quantification of carotenoids and chlorophylls during ripening in grape berries (Vitis vinifera cv. Merlot). J Agric Food Chem. 2010;58:6578–86.

    CAS  PubMed  Google Scholar 

  8. Mendes-Pinto MM, Ferreira ACS, Caris-Veyrat C, Guedes de Pinho. P.Carotenoid, chlorophyll, and chlorophyll-derived compounds in grapes and port wines. J Agric Food Chem. 2005;53:10034–41.

    CAS  PubMed  Google Scholar 

  9. Edelenbos M, Christensen LP, Grevsen K. HPLC determination of chlorophyll and carotenoid pigments in processed green pea cultivars (Pisum sativum L.). J Agric Food Chem. 2001;49:4768–74.

    CAS  PubMed  Google Scholar 

  10. Gandul-Rojas B, Roca-L Cepero M, Minguez-Costera MI. Chlorophyll and carotenoid patterns in olive fruits, Olea europaea cv. Arbequina. J Agric Food Chem. 1999;47:2207–12.

    CAS  PubMed  Google Scholar 

  11. Gautier-Jaques A, Bortlik K, Hau J, Fay LB. Improved method to track chlorophyll degradation. J Agric Food Chem. 2011;49:1117–22.

    Google Scholar 

  12. Almela L, Fernandez-Lopez JA, Roca MJ. High-performance liquid chromatographic screening of chlorophyll derivatives produced during fruit storage. J Chromatogr A. 2000;870:483–98.

    CAS  PubMed  Google Scholar 

  13. Ndiaye ND, Dhuique-Mayer C, Cisse M, Dornier M. Identification and thermal degradation kinetics of chlorophyll pigments and ascorbic acid from ditax nectar (Detarium senegalense J.F. Gmel). J Agric Food Chem. 2011;29:12018–27.

    Google Scholar 

  14. Teng SS, Chen BH. Formation of pyrochlorophylls and their derivative in spinach leaves during heating. Food Chem. 1999;65:367–73.

    CAS  Google Scholar 

  15. Borrmann D, Castelhano de Andrade J, Lanfer-Marquez UM. Chlorophyll degradation and formation of colorless chlorophyll derivatives during soybean (Glycine max L.Merill) seed maturation. J Agric Food Chem. 2009;57:2030–4.

    CAS  PubMed  Google Scholar 

  16. Aparicio-Ruiz R, Minguez-Mosquera MI, Gandul-Rojas B. Thermal degradation kinetics of chlorophyll pigments in virgin olive oils. 1. Compounds of series a. J Agric Food Chem. 2010;58:6200–8.

    CAS  PubMed  Google Scholar 

  17. Roca M, Gallardo-Guerrero L, Minguez-Mosquera MI, Gandul-Rojas B. Control of olive oil adulteration with copper-chlorophyll derivatives. J Agric Food Chem. 2010;58:51–6.

    CAS  PubMed  Google Scholar 

  18. Gandul-Rojas B, Roca M, Minguez-Mosquera MI. Chlorophyll and carotenoid degradation mediated by thylakoid associated peroxidative activity in olives (Olea europaea) cv. Hojiblanca. J Plant Physiol. 2004;161:499–507.

    CAS  PubMed  Google Scholar 

  19. Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, et al. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell. 2007;19:1649–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Roiser MH, Müller T, Kräutler B. Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica). J Agric Food Chem. 2015;63:1385–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Indrasti D, Andarwulan N, Purnomo EH, Wulandari N. Stability of chlorophyll as natural colorant: a review for Suji (Dracaena Angustifolia Roxb.) leaves’ case. Curr Res Nutr Food Sci J. 2018;6:609–25.

    Google Scholar 

  22. Cha KH, Kang SW, Kim CY, Um BH, Na YR, Pan CH. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agric Food Chem. 2010;58:4756–61.

    CAS  PubMed  Google Scholar 

  23. Cha KH, Lee HJ, Koo SY, Song DG, Lee DU, Pan CH. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris. J Agric Food Chem. 2010;58:793–7.

    CAS  PubMed  Google Scholar 

  24. Macias-Sanchez MD, Mantell C, Rodriguez M, Martina de la Ossa E, Lubian LM, Montero O. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta. 2005;77:948–52.

    Google Scholar 

  25. Macias-Sanchez MD, Mantell Serrano C, Rodriguez MR, Martinez de la Ossa E, Lubian LM, Montero O. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J Sep Sci. 2008;31:1352–62.

    CAS  PubMed  Google Scholar 

  26. Macias-Sanchez MD, Mantell C, Rodriguez M, Martinez de la Ossa E, Lubian LM, Montero O. Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp. J Supercrit Fluids. 2007;39:323–9.

    CAS  Google Scholar 

  27. Macias-Sanchez MD, Mantell C, Rodriguez M, Martinez de la Ossa E, Lubian LM, Montero O. Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J Food Eng. 2005;66:245–51.

    Google Scholar 

  28. Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, et al. Supercritical CO2 extraction of pigment component with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol. 2009;84:657–61.

    CAS  Google Scholar 

  29. Bohn T, Walczyk T. Determination of chlorophyll in plant samples by liquid chromatography using zinc–phthalocyanine as an internal standard. J Chromatogr A. 2004;1024:123–8.

    CAS  PubMed  Google Scholar 

  30. Huang SC, Hung CF, Wu WB, Chen BH. Determination of chlorophylls and their derivatives in Gynostemma pentaphyllum Makino by liquid chromatography-mass chromatography. J Pharm Biomed Anal. 2008;48:105–12.

    CAS  PubMed  Google Scholar 

  31. Moran M, Porath D. Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol. 1980;65:478–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen SC, Hsu HY, Huang CN, Wea JSB. Color loss in ethanolic solutions of chlorophyll a. J Agric Food Chem. 2010;58:8056–60.

    CAS  PubMed  Google Scholar 

  33. Schaber PM, Hunt JE, Fries R, Katz JJ. High-performance liquid chromatographic study of the chlorophyll allomerisation reaction. J Chromatogr. 1984;316:25–41.

    CAS  Google Scholar 

  34. Kuronen P, Hyvärinen K, Hynninen PH. High-performance liquid chromatography separation and isolation of the methanolic separation and isolation of the methanolic allomerization products of chlorophyll a. J Chromatogr A. 1993;654:93–104.

    CAS  Google Scholar 

  35. Porra RJ. A simple method for extracting chlorophylls from the recalcitrant alga, Nannochloris atomus, without formation of spectroscopically-different magnesium-rhodochlorin derivatives. Biochem Biophys Acta. 1990;1019:137–41.

    CAS  Google Scholar 

  36. Esmail A-SA. Pharmacological and therapeutic activities of Hedera helix- a review. Aust J Pharm. 2018;8:41–53.

    Google Scholar 

  37. Chen K, Rios JJ, Roca M, Perez-Galvez A. Development of an accurate and high-throughput methodology for structural comprehension of chlorophylls derivatives (II). Dephytilated derivatives. J Chromatogr A. 2015;1412:90–9.

    CAS  PubMed  Google Scholar 

  38. Lefebvre T, Talbi A, Atwi-Ghaddar S, Destandau E, Lesellier E. Development of an analytical method for chlorophyll pigment separation by reversed-phase supercritical fluid chromatography. J Chromatogr A. 1612;2020:460643.

    Google Scholar 

  39. Schwartz SJ, Von Elbe JH. Kinetics of chlorophyll degradation to pyropheophytin in vegetables. J Food Sci. 1983;48:1303–6.

    CAS  Google Scholar 

  40. Belscak-Cvitanovic A, Durgo K, Busic A, Franekic J, Komes D. Phytochemical attributes of four conventionally extracted medicinal plants and cytotoxic evaluation of their extracts on human laryngeal carcinoma (Hep2) cells. J Med Food. 2014;17:206–17.

    CAS  PubMed  Google Scholar 

  41. Gourguillon L, Destandau E, Lobstein A, Lesellier E. Comparaison de différentes méthodes d’extraciton d’acides dicaféoylquiniques à partir d’une plante halophile. Comptes Rendus Chimie. 2016;19:1133–41.

    CAS  Google Scholar 

  42. Chemat F, Vian MA, Fabiano-Tixier A-S, Nutrizio M, Jambrak AR, Munekata PES, et al. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020;22:2325–53.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lesellier.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefebvre, T., Destandau, E. & Lesellier, E. Evaluation of the extraction and stability of chlorophyll-rich extracts by supercritical fluid chromatography. Anal Bioanal Chem 412, 7263–7273 (2020). https://doi.org/10.1007/s00216-020-02859-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02859-3

Keywords

Navigation