Skip to main content
Log in

Modified stainless steel microneedle electrode for polyphenolics detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work outlines a simple fabricated microneedle electrode for sensitive and real sample monitoring of plant polyphenolics. The electrode was fabricated by layer-by-layer assembly (LBL) with nanocomposite of carbon nanotubes (CNT) and cellulose nanocrystals (CNC) as the first layer, followed by polyaniline (PANI), and finally, the 3-(glycidyloxypropyl)trimethoxysilane (GOPS) layer as the binding agent. The microneedle electrodes were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy. The developed microneedle electrodes were successfully applied for the capacitive detection of gallic acid (GA) and chlorogenic acid (CA) as polyphenol model compounds. The microneedle electrode was also used to quantify polyphenols in orange juice. The electrochemical capacitance responses were linearly proportional to the concentrations of GA and CA in the range of 0.1–87.23 μg/mL for GA and 0.1–78.01 μg/mL for CA. The calculated detection limits (LOD) for GA and CA were found to be 0.29 ± 0.2 μg/mL and 0.34 ± 0.2 μg/mL respectively. As minimally invasive technology, microneedle electrodes were found to be promising for successful in situ screening of antioxidants in different fruit matrices. The microneedle electrodes were also applied to the depth profiling of antioxidant content in fruit samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

Abbreviations

APS:

Ammonium peroxydisulfate

Amp:

Amperometry

AuMCs:

Gold microclusters

CA:

Chlorogenic acid

CNT:

Carbon nanotubes

CNC:

Cellulose nanocrystals

CCE:

Carbon ceramic electrode

CS:

Chitosan

ChCl:

Chlorine chloride

CPE:

Carbon paste electrode

COF:

Covalent organic framework

CV:

Cyclic voltammetry

DPV:

Differential pulse voltammetry

Delph:

Delphinidin

DMC:

Defective mesoporous carbon

DMTP:

2,5-Dimethoxyterephaldehyde

EIS:

Electrochemical impedance spectroscopy

ERGO:

Electrochemically reduced graphene oxide

FIA:

Flow injection amperometry

fFe2O3 :

Fishbone-shaped Fe2O3

FTO:

Flourine doped tin oxide

GOPS:

3-(Glycidyloxypropyl)trimethoxysilane

GA:

Gallic acid

GCE:

Glassy carbon electrode

IL:

Ionic liquid

LBL:

layer by layer

LOD:

Limit of detection

MIP:

Molecularly imprinted polymer

MIL-100(Fe):

Metal organic framework

MIS:

Molecularly imprinted siloxane

MPC:

Macroporous carbon

MWCNT:

Multiwalled carbon nanotubes

NPs:

Nanoparticles

PANI:

Polyaniline

PME:

Polymelamine electrode

PmPD:

Poly(m-phenylenediamine)

PAL:

Palygorskite

PEP:

Polyepinephrine

PEG:

Pencil graphite electrode

PDDA:

Poly(diallyldimethylammonium chloride)

POM:

Polyoxometalates

rGO:

Reduced graphene oxide

SF:

Sulfonate

SPCE:

Screen-printed carbon electrode

SEM:

Scanning electron microscopy

SWV:

Square wave voltammetry

TABP:

1,3,5-Tris(4-aminophenyl)benzene

TNrGO:

Titanium nitride doped graphene oxide

TPM:

3-(Trimethoxysilyl)propyl methacrylate

VTMS:

Vinyltrimethoxysilane

WCrGO:

Wolfram carbide doped graphene oxide

References

  1. Cho AS, Jeon SM, Kim MJ, Yeo J, Seo K, Choi MS, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet induced-obese mice. Food Chem Toxicol. 2010;48:937–43.

    CAS  PubMed  Google Scholar 

  2. Su YL, Cheng SH. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film. Anal Chim Acta. 2015;901:41–50.

    CAS  PubMed  Google Scholar 

  3. Mudnic I, Modun D, Rastija V, Vukovic J, Brizic I, Katalinic V, et al. Antioxidative and vasodilatory effects of phenolic acids in wine. Food Chem. 2010;119:1205–10.

    CAS  Google Scholar 

  4. Francisco V, Costa G, Figueirinha A, Marques C, Pereira P, Neves BM, et al. Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: contribution of chlorogenic acid. J Ethnopharmacol. 2013;148:126–34.

    CAS  PubMed  Google Scholar 

  5. Naso LG, Valcarcel M, Roura-Ferrer M, Kortazar D, Salado C, Lezama L, et al. Promising antioxidant and anticancer (human breast cancer) oxidovanadium (IV) complex of chlorogenic acid synthesis, characterization and spectroscopic examination on the transport mechanism with bovine serum albumin. J Inorg Biochem. 2014;135:86–99.

    CAS  PubMed  Google Scholar 

  6. Limpisophon K, Schleining G. Use of gallic acid to enhance the antioxidant and mechanical properties of active fish gelatin film. J Food Sci. 2017;82:80–9.

    CAS  PubMed  Google Scholar 

  7. Blainski A, Lopes GC, De-Mello JCP. Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium Brasiliense L. Molecules. 2013;18:6852–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao Y, Wang J, Ballevre O, Luo H, Zhang W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens Res. 2012;35:370–5.

    CAS  PubMed  Google Scholar 

  9. Chao M, Ma X. Voltammetric determination of chlorogenic acid in pharmaceutical products using poly (aminosulfonic acid) modified glassy carbon electrode. J Food Drug Anal. 2014;22:512–9.

    CAS  PubMed  Google Scholar 

  10. Qing-Hua Y, Li Y, Qing W, Xiao-Qin M. Determination of chlorogenic acid, ferulic acid and flavonoids in FlosLoniceae by high performance liquid chromatography. Asian J Chem. 2011;23:4709–10.

    Google Scholar 

  11. Denderz N, Lehotay J. Using molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography. J Chromatogr A. 2014;1372:72–80.

    CAS  Google Scholar 

  12. Füzfai Z, Molnár-Perl I. Gas chromatographic–mass spectrometric fragmentation study of flavonoids as their trimethylsilyl derivatives: analysis of flavonoids, sugars, carboxylic and amino acids in model systems and in citrus fruits. J Chromatogr A. 2007;1149:88–101.

    PubMed  Google Scholar 

  13. Santos SAO, Vilela C, Freire CSR, Neto CP, Silvestre AJD. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J Chromatogr B. 2013;938:65–74.

    CAS  Google Scholar 

  14. Zhang J, Chen M, Ju W, Liu S, Xu M, Chu J, et al. Liquid chromatograph/tandem mass spectrometry assay for the simultaneous determination of chlorogenic acid and cinnamic acid in plasma and its application to a pharmacokinetic study. J Pharm Biomed. 2010;51:685–90.

    CAS  Google Scholar 

  15. Corominas BGT, Mateo JVG, Zamora LL, Calatayud JM. Determination of tannic acid by direct chemiluminescence in a FIA assembly. Talanta. 2002;58:1243–51.

    Google Scholar 

  16. Wang X, Wang J, Yang N. Chemiluminescent determination of chlorogenic acid in fruits. Food Chem. 2007;102:422–6.

    CAS  Google Scholar 

  17. Magalhães LM, Santos M, Segundo MA, Reis S, Lima JLFC. Flow injection based methods for fast screening of antioxidant capacity. Talanta. 2009;77:1559–66.

    PubMed  Google Scholar 

  18. Hečimović I, Belščak-Cvitanović A, Horžić D, Komes D. Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem. 2011;129:991–1000.

    PubMed  Google Scholar 

  19. Mannino S, Wang J. Electrochemical methods for food and drink analysis. Electroanalysis. 1992;9:835–40.

    Google Scholar 

  20. Mugo SM, Edmunds BJ, Berg D, Gill N. An integrated carbon entrapped molecularly imprinted polymer (MIP) electrode for selective voltammetric detection of resveratrol in wine. Anal Methods. 2015;7:9092–9.

    CAS  Google Scholar 

  21. Albelaez JH, Vazquez M, Calderon JC. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: a review. Food Chem. 2017;221:1371–81.

    Google Scholar 

  22. Cochet M, Louarn G, Quillard S, Buisson J, Lefrant S. Theoretical and experimental vibrational study of emeraldine in salt form. J Raman Spectrosc. 2000;31:1041–9.

    CAS  Google Scholar 

  23. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes. Phys Rep. 2005;409:47–99.

    Google Scholar 

  24. Kar P, Choudhury A. Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sensors Actuators B Chem. 2013;183:25–33.

    CAS  Google Scholar 

  25. Salvatierra RV, Oliveira MM, Zarbin AJ. One-pot synthesis and processing of transparent, conducting, and freestanding carbon nanotubes/polyaniline composite films. Chem Mater. 2010;22:5222–34.

    CAS  Google Scholar 

  26. Bachhav SG, Patil DR. Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites and its electrical percolation behavior. Am J Mater Sci. 2013;5:90–5.

    Google Scholar 

  27. Kulkarni MV, Kale BB. Studies of conducting polyaniline (PANI) wrapped-multiwalled carbon nanotubes (MWCNTs) nanocomposite and its application for optical pH sensing. Sensors Actuators B Chem. 2013;187:407–12.

    CAS  Google Scholar 

  28. Oueiny C, Berlioz S, Perrin FX. Carbon nanotube-polyaniline composites. Prog Polym Sci. 2014;39:707–48.

    CAS  Google Scholar 

  29. Ginic-Markovic M, Matisons JG, Cervini R, Simon GP, Fredericks PM. Synthesis of new polyaniline/nanotube composites using ultrasonically initiated emulsion polymerization. Chem Mater. 2006;18:6258–65.

    CAS  Google Scholar 

  30. Xiong C, Wang Y, Qu H, Zhang L, Qiu L, Chen W, et al. Highly sensitive detection of gallic acid based on organic electrochemical transistors with poly(diallyldimethylammoniumchloride) and carbon nanomaterials nanocomposites functionalized gate electrodes. Sensors Actuators B Chem. 2017;246:235–42.

    CAS  Google Scholar 

  31. Puangjan A, Chaiyasith S. An efficient ZrO2/Co3O4/reduced graphene oxide nanocomposite electrochemical sensor for simultaneous determination of gallic acid, caffeic acid and protocatechuic acid natural antioxidants. Electro Chim Acta. 2016;211:273–88.

    CAS  Google Scholar 

  32. Ghaani M, Nasirizadeh N, Ardakani SAY, Mehrjardi FZ, Scampicchio M, Farris S. Development of an electrochemical nanosensor for the determination of gallic acid in food. Anal Methods. 2016;8:1103–10.

    CAS  Google Scholar 

  33. Shojaei S, Nasirizadeh N, Entezam M, Koosha M, Azimzadeh M. An electrochemical nanosensor based on molecularly imprinted polymer (MIP) for detection of gallic acid in fruit juices. Food Anal Methods. 2016;9:2721–31.

    Google Scholar 

  34. Gopal P, Reddy TM, Palakollu VM. Development, characterization and application of a carbon based nanomaterial composite as an electrochemical sensor for monitoring natural antioxidant (gallic acid) in beverages. ChemistrySelect. 2017;2:3804–11.

    CAS  Google Scholar 

  35. Shahamirifard SA, Ghaedi M, Razmi Z, Hajati S. A simple ultrasensitive electrochemical sensor for simultaneous determination of gallic acid and uric acid in human urine and fruit juices based on zirconia-choline chloride-gold nanoparticles modified carbon paste electrode. Biosens Bioelectron. 2018;114:30–6.

    CAS  PubMed  Google Scholar 

  36. Tashkhourian J, Nami-Ana SF. A sensitive electrochemical sensor for determination of gallic acid based on SiO2 nanoparticle modified carbon paste electrode. Mater Sci Eng C. 2015;52:103–10.

    CAS  Google Scholar 

  37. Hamid RA, Newair EF. Adsorptive stripping voltammetric determination of gallic acid using an electrochemical sensor based on polyepinephrine/glassy carbon electrode and its determination in black tea sample. J Electroanal Chem. 2013;704:32–7.

    Google Scholar 

  38. Tashkhourian J, Nami-Ana SF, Hashemnia S, Hormozi-Nezhad MR. Construction of a modified carbon paste electrode based on TiO2 nanoparticles for the determination of gallic acid. J Solid State Electrochem. 2013;17:157–65.

    CAS  Google Scholar 

  39. Gao F, Zheng D, Tanaka H, Zhan F, Yuan X, Gao F, et al. An electrochemical sensor for gallic acid based on Fe2O3/electroreduced graphene oxide composite: estimation for the antioxidant capacity index of wines. Mater Sci Eng C. 2015;57:279–87.

    CAS  Google Scholar 

  40. Stanković DM, Ognjanović M, Martin F, Švorc L, Mariano JFML, Antić B. Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid. Anal Biochem. 2017;539:104–12.

    PubMed  Google Scholar 

  41. Wang X, Tan W, Wang Y, Wu D, Kong Y. Electrosynthesis of poly(m-phenylenediamine) on the nanocomposites of palygorskite and ionic liquid for electrocatalytic sensing of gallic acid. Sensors Actuators B Chem. 2019;284:63–72.

    CAS  Google Scholar 

  42. Liang Z, Zhai H, Chen Z, Wang H, Wang S, Zhou Q, et al. A simple, ultrasensitive sensor for gallic acid and uric acid based on gold microclusters/sulfonate functionalized graphene modified glassy carbon electrode. Sensors Actuators B Chem. 2016;224:915–25.

    CAS  Google Scholar 

  43. Wegiel J, Burnat B, Skrzypek S. A graphene oxide modified carbon ceramic electrode for voltammetric determination of gallic acid. Diam Relat Mater. 2018;88:137–43.

    CAS  Google Scholar 

  44. Gao Y, Wang L, Zhang Y, Zou L, Li G, Ye B. Highly sensitive determination of gallic acid based on a Pt nanoparticle decorated polyelectrolyte functionalized graphene modified electrode. Anal Methods. 2016;8:8474–82.

    CAS  Google Scholar 

  45. Santos WDJR, Santhiago M, Yoshida IPV, Kubota LT. Novel electrochemical sensor for the selective recognition of chlorogenic acid. Anal Chim Acta. 2011;695:44–50.

    CAS  Google Scholar 

  46. Ribeiro CM, Miguel EM, Silva JDS, Silva CBD, Goulart MOF, Kubota LT, et al. Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples. Talanta. 2016;157:119–25.

    Google Scholar 

  47. Chen Y, Huang W, Chen K, Zhang T, Wang Y, Wang J. A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: the outstanding analytical performance towards chlorogenic acid. Talanta. 2019;196:85–91.

    CAS  PubMed  Google Scholar 

  48. Zhang T, Chen Y, Huang W, Wang Y, Hu X. A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sensors Actuators B Chem. 2018;276:362–9.

    CAS  Google Scholar 

  49. Mohammadi N, Najafi M, Adeh NB. Highly defective mesoporous carbon – ionic liquid paste electrode assensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts. Sensors Actuators B Chem. 2017;243:838–46.

    CAS  Google Scholar 

  50. Yang X, Wang Z, Chen P, Sun D. Surface enhancement of porous alumina microfibers toward electrochemical sensing of chlorogenic acid. Microchem J. 2019;145:801–5.

    CAS  Google Scholar 

Download references

Acknowledgments

Mugo research group acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and MacEwan University Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel M. Mugo.

Ethics declarations

Conflict of interest

Authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanjai, Mugo, S.M. & Lu, W. Modified stainless steel microneedle electrode for polyphenolics detection. Anal Bioanal Chem 412, 7063–7072 (2020). https://doi.org/10.1007/s00216-020-02836-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02836-w

Keywords

Navigation