Skip to main content
Log in

Probiotics: a Promising Generation of Heavy Metal Detoxification

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Different environmental toxins especially heavy metals exist in soil, water, and air recording toxic effect on human, animal, and plant. These toxicant elements are widespread in environment causing various disturbances in biological systems. Numerous strategies have been applied recently to alleviate heavy metal contamination; however, most of these strategies were costly and seemed unfriendly to our environment. Probiotics are living cell bacteria with beneficial characteristics for human health. Lactobacillus and Bifidobacterium are the major probiotic groups; however, Pediococcus, Lactococcus, Bacillus, and yeasts are recorded as probiotic. The vital role of the probiotics on maintenance of body health was previously investigated. Probiotics were previously recorded to its powerful capacity to bind numerous targets and eliminate them with feces. These targets may be aluminum, cadmium, lead, or arsenic. The current review discusses the history of probiotics, detoxification role of probiotics caused by heavy metals, and mechanism of their action that modulate different signaling pathway disturbance associated with heavy metal accumulation in biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

A. muciniphila :

Akkermansia muciniphila

EFSA:

European food safety authority

F. prausnitzii :

Faecalibacterium prausnitzii

FAO:

Food and Agriculture Organization

ISAPP:

International Scientific Association of Probiotics and Prebiotics

L. brevis :

Lactobacillus brevis

L. helveticus :

Lactobacillus helveticus

L. plantarum :

Lactobacillus plantarum

L. reuteri :

Lactobacillus reuteri

L. rhamnosus :

Lactobacillus rhamnosus

WHO:

World Health Organization

References

  1. Munoz-Olivas R, Camara C (2001) Speciation related to human health. In: Ebdon L, Pitts L, Cornelis R, Crews H, Donard OFX, Quevauviller P (eds) Trace element speciation for environment, food and health. R Soc Chemi, Cambridge, pp 331–353

    Google Scholar 

  2. Kheradmand K, Kamali K, Fathipour Y, Barzegar M, Goltapeh EM (2006) Effect of pigmy mite Pediculaster fletchmanni (Acari: Siteroptidae) on mineral elements of button mushroom Agaricus bisporous. P.J.B.S. 9:2177–2180

    CAS  Google Scholar 

  3. Halttunen T, Finell M, Salminen S (2007) Arsenic removal by native and chemically modified lactic acid bacteria. Int JFood Microbiol 120:173–178

    CAS  Google Scholar 

  4. Zoghi A, Khosravi-Darani K, Sohrabvandi S (2014) Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chemis 14:84–98

    CAS  Google Scholar 

  5. Ahemad M, Kibret M (2013) Recent trends in microbial biosorption of heavy metals: a review. Biochem Mol Biol 1:19–26

    Google Scholar 

  6. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    CAS  PubMed  Google Scholar 

  7. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    CAS  PubMed  Google Scholar 

  8. Huang L, Xie J, Lv B, Shi X, Li G, Liang F, Lian J (2013) Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS. Mar Pollut Bull 76(1-2):325–332. https://doi.org/10.1016/jmarpolbul.2013.03.037

    Article  CAS  PubMed  Google Scholar 

  9. Lilly DM, Stillwell RH (1965) Probiotics: growth-promoting factors produced by microorganisms. Science 147:747–748

    CAS  PubMed  Google Scholar 

  10. Parker RB (1974) Probiotics, the other half of the antibiotic story. Anim Nutr Health 29:4–8

    Google Scholar 

  11. Marteau P, Messing B, Arrigoni E, Briet F, Flourie B, Morin MC, Rambaud JC (1997) Do patients with short-bowel syndrome need a lactose-free diet? J. C. Nutrition (13):13–16

  12. Salminen S, Bouley MC, Boutron-Rualt MC, Cummings J, Franck A, Gibson G, Isolauri E, MoreauMC RM, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Bri J Nutr 1:147–171

    Google Scholar 

  13. Diplock AT, Aggett P, Ashwell M, Bornet F, Fern E, Roberfroid M (1999) Scientific concepts of functional foods in Europe: consensus document. Br J Nutr 81:S1–S27

    CAS  Google Scholar 

  14. Ghosh D, Chattopadhyay P (2010) Preparation of idli batter, its properties and nutritional improvement during fermentation. J Food Sci Technol 48:610–615. https://doi.org/10.1007/s13197-010-0148-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vanaja G, Gotcheva V, Angelov A, Agrawal R (2011) Formation of volatiles and fatty acids of therapeutic importance in the probiotic Lactobacillus plantarum LPcfr adapted to resist GIT conditions. J Food Sci Technol 48:110–113

    CAS  PubMed  Google Scholar 

  16. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food, report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada. 1–11

  17. Huys G, Botteldoorn N, Delvigne F, De Vuyst L, Heyndrickx M, Pot B, Dubois JJ, Daube G (2013) Microbial characterization of probiotics–advisory report of the Working Group “8651 Probiotics” of the Belgian Superior Health Council (SHC). Mol Nutr Food Res 57:1479–1504

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fijian S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11:4745–4767

    Google Scholar 

  19. Oyetayo VO, Oyetayo FL (2005) Potential of probiotics as biotherapeutic agents targeting the innate immune system. Afr J Biotechnol 4(2):123–127

    Google Scholar 

  20. Hebert EM, Saavedra L, Ferranti P (2010) In: Mozzi F, Raya RR, Vignolo GM (eds) Bioactive peptides derived fromcasein and whey proteins. Biotechnology of lactic acid bacteria: novel applications. Wiley- Blackwell, Ames, pp 233–249

    Google Scholar 

  21. Walther B, Sieber R (2011) Bioactive proteins and peptides in foods. Int J Vitam Nutr Res 81:181–192

    CAS  PubMed  Google Scholar 

  22. Martinez-Villaluenga C, Penas E, Frias J (2017) Bioactive peptides in fermented foods: production and evidence for health effects fermented foods in health and disease prevention. Academic Press, Boston, pp 23–47

    Google Scholar 

  23. Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565

    CAS  PubMed  Google Scholar 

  24. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    CAS  PubMed  Google Scholar 

  25. Lloyd RV, Hanna PM, Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885–888

    CAS  PubMed  Google Scholar 

  26. Hanna PM, Kadiiska MB, Mason RP (1992) Oxygen-derived free-radical and active oxygen complex-formation from cobalt (II) chelates in vitro. Chem Res Toxicol 5:109–115

    CAS  PubMed  Google Scholar 

  27. Crans DC, Smee JJ, Gaidamauskas E, Yang LQ (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902

    CAS  PubMed  Google Scholar 

  28. Rin K, Kawaguchi K, Yamanaka K, Tezuka M, Oku N, Okada S (1995) DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals. Biol Pharm Bull 18:45–48

    CAS  PubMed  Google Scholar 

  29. Hartwig A, Schwerdtle T (2002) Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol Lett 127:47–54

    CAS  PubMed  Google Scholar 

  30. Garcia-Esquinas E, Pollan M, Umans JG, Francesconi KA, Goessler W, Guallar E (2013) Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev 22:1944–1953

    CAS  PubMed  Google Scholar 

  31. Silbergeld EK, Waalkes M, Rice JM (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. Am JInd Med 38(3):316–323

    CAS  Google Scholar 

  32. Milatovic D, Gupta RC, Yin Z, Zaja-Milatovic S, Aschner M (2017) Manganese in reproductive and developmental toxicology:567–581. https://doi.org/10.1016/B978-0-12-804239-7.00032-9

  33. Larsen N, Vogensen FK, Gobel RJ, Michaelsen KF, Forssten SD, Lahtinen SJ et al (2013) Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clin Nutr 32:935–940

    CAS  PubMed  Google Scholar 

  34. Veiga P, Pons N, Agrawal A, Oozeer R, Guyonnet D, Brazeilles R et al (2014) Changes of the human gut microbiome induced by a fermented milk product. Sci Rep 4:6328

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Giri SS, Yun S, Jun JW, Kim HJ, Kim SG, Kang JW, Kim SW, Han SJ, Sukumaran V, Park SC (2018) Therapeutic effect of intestinal autochthonous Lactobacillus reuteri P16 against waterborne lead toxicity in Cyprinus carpio. Front Immunol 9:1824. https://doi.org/10.3389/fimmu.2018.01824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tian F, Zhai Q, Zhao J, Liu X, Wang G, Zhang H, Zhang H, Chen W (2012) Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol Trace Elem Res 150:264–271

    PubMed  Google Scholar 

  37. Coryell M, Mcalpine M, Pinkham NV, Mcdermott TR, Walk ST (2018) The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun 9:5424

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng S, Liu Y, Huang Y, Zhao J, Zhang H, Zhai Q, Chen W (2019) Influence of oral administration of Akkermansia muciniphila on the tissue distribution and gut microbiota composition of acute and chronic cadmium exposure mice. FEMS Microbiol Lett 366

  39. Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K (2017) Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol 30:996–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, Paris A, Want EJ, de Waziers I, Cloarec O, Richards SE, Wang Y, Dumas ME, Ross A, Rezzi S, Kochhar S, van Bladeren P, Lindon JC, Holmes E, Nicholson JK (2011) Colonization induced host-gut microbial metabolic interaction. MBio 2:e00271–e00210

    PubMed  PubMed Central  Google Scholar 

  41. Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M, Sauty M, Thomas P, Pot B, Foligné B (2013) Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 222:132–138

    CAS  PubMed  Google Scholar 

  42. Zhai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W (2019a) Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: a pilot study of Chinese children. Environ Res 171:501–509

    CAS  PubMed  Google Scholar 

  43. Yu H, Zhang B, Liu XX, Yu S, Cheng JS et al (2016a) Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota. Environ Sci Technol 50:7189–7197

    CAS  PubMed  Google Scholar 

  44. Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W (2016a) Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl Environ Microbiol 82:4429–4440

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang J, Hu W, Yang H, Chen F, Shu Y, Zhang G, Liu J, Liu Y, Li H, Guo L (2020a) Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food. Environ Int 138:105600

    CAS  PubMed  Google Scholar 

  46. Wang N, Jiang M, Zhang P, Shu H, Li Y, Guo Z, Li Y (2020b) Amelioration of Cd induced bioaccumulation, oxidative stress and intestinal microbiota by Bacillus cereus in Carassius auratus gibelio. Chemosphere 245:125613

    CAS  PubMed  Google Scholar 

  47. Wu GF, Xiao XP, Feng PY, Xie FQ, Yu ZS, Yuan WZ et al (2017) Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 7

  48. Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB et al (2014) Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxicmetal levels in Tanzanian pregnant women and school children. Mbio:5

  49. Kadry MO, Abdel Megeed RM (2018) Probiotics as a complementary therapy in the model of cadmium chloride toxicity: crosstalk of β-catenin, BDNF, and StAR signaling pathways. Biol Trace Elem Res 185:404–413

    CAS  PubMed  Google Scholar 

  50. Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S et al (2015) Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio:6

  52. Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC et al (2014) Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5

  53. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ninkov M, Popov Aleksandrov A, Demenesku J, Mirkov I, Mileusnic D, Petrovic A, Grigorov I, Zolotarevski L, Tolinacki M, Kataranovski D, Brceski I, Kataranovski M (2015) Toxicity of oral cadmium intake: impact on gut immunity. Toxicol Lett 237:89–99

    CAS  PubMed  Google Scholar 

  55. Zhai Q, Qu D, Feng S, Yu Y, Yu L, Tian F et al (2019b) Oral supplementation of lead intolerant intestinal microbes protects against lead (Pb) toxicity in mice. Front Microbiol 10:3161

    PubMed  Google Scholar 

  56. Mrvcic J, Stanzer D, Solic E, Stehlik-Tomas V (2012) Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J Microbiol Biotechnol 28:2771–2782

    CAS  PubMed  Google Scholar 

  57. Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78:6397–6404

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gerbino E, Mobili P, Tymczyszyn E, Fausto R, Gómez-Zavaglia A (2011) FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions. JMol Struct 987:186–192

    CAS  Google Scholar 

  59. Upreti RK, Sinha V, Mishra R, Kannan A (2011) In vitro development of resistance to arsenite and chromium-VI in lactobacilli strains as perspective attenuation of gastrointestinal disorder. J Environ Biol 32:325

    CAS  PubMed  Google Scholar 

  60. Shrivastava R, Upreti RK, Chaturvedi UC (2003) Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium. FEMS Immunology & Medical Microbiology 38:65–70

    CAS  Google Scholar 

  61. Ibrahim F, Ruvio S, Granlund L, Salminen S, Viitanen M, Ouwehand AC (2010) Probiotics and immunosenescence: cheese as a carrier. FEMS Immunol Med Microbiol 59:53–59

    CAS  PubMed  Google Scholar 

  62. Prakash D, Gopinath K, Sudhandiran G (2013) Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. Neuro Molecular Med 15:192–208

    CAS  Google Scholar 

  63. Zatta P, Kiss T, Suwalsky M, Berthon G (2002) Aluminum(III) as a promoter of cellular oxidation. Coord Chem Rev 228:271–284

    CAS  Google Scholar 

  64. Li M, Cui J, Gao Y, Zhang W, Sun L, Liu X, Liu Y, Sun D (2015) Pathological changes and effect on the learning and memory ability in rats exposed to fluoride and aluminum. Toxicol Res-Uk 4:1366–1373

    Google Scholar 

  65. Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, Madsen KL (2013) Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psycho neuro endocrinology 38:1738–1747

    CAS  Google Scholar 

  66. Tian F, Yu L, Zhai Q, Xiao Y, Shi Y, Jiang J, Liu X, Zhao J, Zhang H, Chen W (2017) The therapeutic protection of a living and dead Lactobacillus strain against aluminum-induced brain and liver injuries in C57BL/6 mice. PLoS One 12:e0175398

    PubMed  PubMed Central  Google Scholar 

  67. Gareau MG (2014) Microbiota-gut-brain axis and cognitive function. In: Lyte M, Cryan JF (eds) Microbial endocrinology: the microbiotagut- brain axis in health and disease, Adv Exp med biol, vol 81, pp 357–371

    Google Scholar 

  68. Raghuvanshi R, Chaudhari A, Kumar GN (2016) Amelioration of cadmium-and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid. Nutrition 32:1285–1294

    CAS  PubMed  Google Scholar 

  69. Bosscher D, Van Caillie-Bertrand M, Deelstra H (2003) Do thickening properties of locust bean gum affect the amount of calcium, iron and zinc available for absorption from infant formula? In vitro studies. Int J Food Sci Nutr 54:261–268

    CAS  PubMed  Google Scholar 

  70. Ademiluyi AO, Oboh G, Boligon AA, Athayde ML (2015) Dietary supplementation with fermented legumes modulate hyperglycemia and acetylcholinesterase activities in Streptozotocin-induced diabetes. Pathophysiology 22:195–201

    CAS  PubMed  Google Scholar 

  71. Reyes-Becerril M, Angulo C, Sanchez V, Cuesta A, Cruz A (2019) Methyl mercury, cadmium and arsenic(III)-induced toxicity, oxidative stress and apoptosis in Pacific red snapper leukocytes. Aquat Toxicol 213:105223. https://doi.org/10.1007/s00204-018-2332-7

    Article  CAS  PubMed  Google Scholar 

  72. Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Bio 54:226–231. https://doi.org/10.1039/c9fo00587k

    Article  CAS  Google Scholar 

  73. Ahuie Kouakou G, Gagnon H, Lacasse V, Wagner JR, Naylor S, Klarskov K (2019) Dehydroascorbic acid S-thiolation of peptides and proteins: role of homocysteine and glutathione. Free Radic Biol Med 141:233–243. https://doi.org/10.1039/c8fo02554a

    Article  CAS  PubMed  Google Scholar 

  74. Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D (2008) Immunomodulatory effects of probiotics in the intestinal tract. Curr Issues Mol Biol 10(1/2):37

    CAS  PubMed  Google Scholar 

  75. Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2:43–53

    CAS  PubMed  Google Scholar 

  76. Smelt MJ, de Haan BJ, Bron PA, van Swam I, Meijerink M, Wells JM, Faas MM, de Vos P (2013) Probiotics can generate FoxP3 T-cell responses in the small intestine and simultaneously inducing CD4 and CD8 T cell activation in the large intestine. PLoS One 8:e68952. https://doi.org/10.1371/journal.pone.0068952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Trapecar M, Goropevsek A, Gorenjak M, Gradisnik L, Slak RM (2014) A co-culture model of the developing small intestine offers new insight in the early immune-modulation of enterocytes and macrophages by Lactobacillus spp. through STAT1 and NF-B p65 translocation. PLoS One 9:e86297. https://doi.org/10.1371/journal.pone.0086297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Karczewski J, Troost FJ, Konings I, Dekker J, Kleerebezem M, Brummer R-JM, Wells JM (2010) Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 298:G851–G859

    CAS  PubMed  Google Scholar 

  79. Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W (2016b) Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Appl Environ Microbiol 82:4429–4440. https://doi.org/10.1128/AEM.00695-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Isolauri E, Sherman PM, Walker WA (2017) Intestinal microbiome: functional aspects in health and disease, Nestlé Nutr Inst Workshop Series, Nestec Ltd., Vevey/S. Karger AG., 88: 161-170. https://doi.org/10.1159/000455400

  81. Jintai C, Shanshan G, Yufei Z, Siqi M, Qiqi X, Wen C et al (2017) Animal source of lactic acid bacteria isolation and clone of the resistance gene against mercury. Heilongjiang Anim Sci Veter Med 3:138–141. https://doi.org/10.13881/j.cnki.hljxmsy.0230

    Article  Google Scholar 

  82. Jiang X, Gu S, Liu D, Zhao L, Xia S, He X, Chen H, Ge J (2018) Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-kB signaling cascades. Front Microbiol 9:2425. https://doi.org/10.3389/fmicb.2018.02425

    Article  PubMed  PubMed Central  Google Scholar 

  83. Feng P, Ye Z, Han H, Ling Z, Zhou T, Zhao S, Virk AK, Kakade A, El-Fatah AA, El Dalatony MM, Salama ES, Liu P, Li X (2020) Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota Commun. Biolo. 3:242

    Google Scholar 

  84. Leilei Y, Qixiao Z, Fengwei T, Xiaoming L, Gang W, Jianxin Z, Hao Z, Arjan N, Wei C (2016) Potential of Lactobacillus plantarum CCFM639 in protecting against aluminum toxicity mediated by intestinal barrier function and oxidative stress. Nutrients. 8:783. https://doi.org/10.3390/nu8120783

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehab M. Abdel-Megeed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Megeed, R.M. Probiotics: a Promising Generation of Heavy Metal Detoxification. Biol Trace Elem Res 199, 2406–2413 (2021). https://doi.org/10.1007/s12011-020-02350-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02350-1

Keywords

Navigation