Skip to main content
Log in

Overproduction of Exopolysaccharide Colanic Acid by Escherichia coli by Strain Engineering and Media Optimization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Colanic acid (CA) is one of the major bacterial exopolysaccharides. Due to its biological activities, CA has a significant commercial value. However, the cultivation conditions have not been optimized for the large-scale production of CA. Here, we constructed a CA-overproducing Escherichia coli strain (ΔwaaF) and statistically optimized its culture media for maximum CA production. Glucose and tryptone were found the optimal carbon and nitrogen sources, respectively. Fractional factorial design indicated tryptone and Na2HPO4 as the critical nutrients for CA production. Through further optimization, we achieved a maximum CA production of 1910.0 mg/L, which is approximately 12-fold higher than the amount obtained using the non-optimized medium initially used. The predicted value of CA production was comparable with experimental value (2052.8 mg/L) under the optimized conditions. This study constitutes a successful demonstration of media optimization for increased CA production, and paves the way for future research for achieving large-scale CA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Danese, P. N., Pratt, L. A., & Kolter, R. (2000). Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. Journal of Bacteriology, 182(12), 3593–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goebel, W. F. (1963). Colanic acid. Proceedings of the National Academy of Sciences of the United States of America, 49(4), 464–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grant, W. D., Sutherland, I. W., & Wilkinson, J. F. (1969). Exopolysaccharide colanic acid and its occurrence in the Enterobacteriaceae. Journal of Bacteriology, 100(3), 1187–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Han, B., Sivaramakrishnan, P., Lin, C. J., Neve, I. A. A., He, J., Tay, L. W. R., Sowa, J. N., Sizovs, A., Du, G., Wang, J., Herman, C., & Wang, M. C. (2017). Microbial genetic composition tunes host longevity. Cell, 169(7), 1249–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanna, A., Berg, M., Stout, V., & Razatos, A. (2003). Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Applied and Environmental Microbiology, 69(8), 4474–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rättö, M., Verhoef, R., Suihko, M. L., Blanco, A., Schols, H. A., Voragen, A. G., Wilting, R., Siika-Aho, M., & Buchert, J. (2006). Colanic acid is an exopolysaccharide common to many Enterobacteria isolated from paper-machine slimes. Journal of Industrial Microbiology and Biotechnology, 33(5), 359–367.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, J., Lee, S. M., & Mao, Y. (2004). Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. International Journal of Food Microbiology, 93(3), 281–286.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, M. S., Kim, Y. D., Hong, S. S., Park, K., Ko, K. S., & Myung, H. (2015). Phage-encoded colanic acid-degrading enzyme permits lytic phage infection of a capsule-forming resistant mutant Escherichia coli strain. Applied Environmental Microbiology, 81(3), 900–909.

    Article  PubMed  CAS  Google Scholar 

  9. Ophir, T., & Gutnick, D. L. (1994). A role for exopolysaccharides in the protection of microorganisms from desiccation. Applied Environmental Microbiology, 60(2), 740–745.

    Article  CAS  PubMed  Google Scholar 

  10. Ren, G., Wang, Z., Li, Y., Hu, X., & Wang, X. (2016). Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. Journal of Bacteriology, 198(11), 1576–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stevenson, G., Andrianopoulos, K., Hobbs, M., & Reeves, P. R. (1996). Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. Journal of Bacteriology, 178(16), 4885–4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Verhoef, R., Beldman, G., Schols, H. A., Siika-aho, M., Rättö, M., Buchert, J., & Voragen, A. G. (2005). Characterisation of a 1,4-β-fucoside hydrolase degrading colanic acid. Carbohydrate Research, 340(11), 1780–1788.

    Article  CAS  PubMed  Google Scholar 

  13. Wu, H., Chen, S., Ji, M., Chen, Q., Shi, J., & Sun, J. (2019). Activation of colanic acid biosynthesis linked to heterologous expression of the polyhydroxybutyrate pathway in Escherichia coli. International Journal of Biological Macromolecules, 128, 752–760.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, S. H., Ko, C. I., Jee, Y., Jeong, Y., Kim, M., Kim, J. S., & Jeon, Y. J. (2013). Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model. Carbohydrate Polymers, 92(1), 84–89.

    Article  CAS  PubMed  Google Scholar 

  15. Peterszegi, G., Isnard, N., Robert, A. M., & Robert, L. (2003). Studies on skin aging. Preparation and properties of fucose-rich oligo- and polysaccharides. Effect on fibroblast proliferation and survival. Biomedicine & Pharmacotheraphy, 57(5-6), 187–194.

    Article  CAS  Google Scholar 

  16. Robert, C., Robert, A. M., & Robert, L. (2005). Effect of a preparation containing a fucose-rich polysaccharide on periorbital wrinkles of human voluntaries. Skin Research and Technology, 11(1), 47–52.

    Article  CAS  PubMed  Google Scholar 

  17. Robert, L., Labat-Robert, J., & Robert, A. M. (2012). Physiology of skin aging. Clinics in Plastic Surgery, 39(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  18. Alhudhud, M., Humphreys, P., & Laws, A. (2014). Development of a growth medium suitable for exopolysaccharide production and structural characterisation by Bifidobacterium animalis ssp. lactis AD011. Journal of Microbiological Methods, 100, 93–98.

    Article  CAS  PubMed  Google Scholar 

  19. Kimmel, S. A., & Roberts, R. F. (1998). Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. International Journal of Food Microbiology, 40(1-2), 87–92.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, J., Dong, Y. C., Fan, L. L., Jiao, Z. H., & Chen, Q. H. (2015). Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydrate Polymers, 115, 694–700.

    Article  CAS  PubMed  Google Scholar 

  21. Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Navasa, N., Rodriguez-Aparicio, L., Martinez-Blanco, H., Arcos, M., & Ferrero, M. A. (2009). Temperature has reciprocal effects on colanic acid and polysialic acid biosynthesis in E. coli K92. Applied Microbiology and Biotechnology, 82(4), 721–729.

    Article  CAS  PubMed  Google Scholar 

  23. Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484–489.

    Article  CAS  PubMed  Google Scholar 

  24. Li, J., Kisara, K., Danielsson, S., Lindstrom, M. E., & Gellerstedt, G. (2007). An improved methodology for the quantification of uronic acid units in xylans and other polysaccharides. Carbohydrate Research, 342(11), 1442–1449.

    Article  CAS  PubMed  Google Scholar 

  25. Scott, R. W. (1979). Colorimetric determination of hexuronic acids in plant materials. Analytical Chemistry, 51(7), 936–941.

    Article  CAS  Google Scholar 

  26. Bajaj, I. B., Saudagar, P. S., Singhal, R. S., & Pandey, A. (2006). Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. Journal of Bioscience and Bioengineering, 102(3), 150–156.

    Article  CAS  PubMed  Google Scholar 

  27. Freitas, F., Alves, V. D., & Reis, M. A. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology, 29(8), 388–398.

    Article  CAS  PubMed  Google Scholar 

  28. Premjet, S., Premjet, D., & Ohtani, Y. (2007). The effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245. Sen'i Gakkaishi, 63(8), 193–199.

    Article  CAS  Google Scholar 

  29. Freitas, F., Alves, V. D., Pais, J., Carvalheira, M., Costa, N., Oliveira, R., & Reis, M. A. M. (2010). Production of a new exopolysaccharide (EPS) by Pseudomonas oleovorans NRRL B-14682 grown on glycerol. Process Biochemistry, 45(3), 297–305.

    Article  CAS  Google Scholar 

  30. Freitas, F., Alves, V. D., Pais, J., Costa, N., Oliveira, C., Mafra, L., Hilliou, L., Oliveira, R., & Reis, M. A. (2009). Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresource Technology, 100(2), 859–865.

    Article  CAS  PubMed  Google Scholar 

  31. Vanhooren, P. T., & Vandamme, E. J. (2000). Microbial production of clavan, an L-fucose rich exopolysaccharide. in: Prog Biotechnol (Eds.) Bielecki, S., Tramper, J., & Polak, J., Vol. 17 (2000). Elsevier, pp. 109-114.

  32. Sheng, L., Zhu, G., & Tong, Q. (2014). Comparative proteomic analysis of Aureobasidium pullulans in the presence of high and low levels of nitrogen source. Journal of Agricultural and Food Chemistry, 62(43), 10529–10534.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, A. S., Mody, K., & Jha, B. (2007). Bacterial exopolysaccharides--a perception. Journal of Basic Microbiology, 47(2), 103–117.

    Article  CAS  PubMed  Google Scholar 

  34. Miqueleto, A. P., Dolosic, C. C., Pozzi, E., Foresti, E., & Zaiat, M. (2010). Influence of carbon sources and C/N ratio on EPS production in anaerobic sequencing batch biofilm reactors for wastewater treatment. Bioresource Technology, 101(4), 1324–1330.

    Article  CAS  PubMed  Google Scholar 

  35. Poli, A., Anzelmo, G., & Nicolaus, B. (2010). Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Marine Drugs, 8(6), 1779–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, C., Bai, J., Cai, Z., & Ouyang, F. (2002). Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology, 93(1), 27–34.

    Article  CAS  PubMed  Google Scholar 

  37. Baabitskaia, V. G., Shcherba, V. V., Puchkova, T. A., & Smirnov, D. A. (2005). Polysaccharides of Ganoderma lucidum: factors affecting their production. Prikladnaya Biokhimiya i Microbiologiya, 41(2), 194–199.

    CAS  Google Scholar 

  38. Yuan, B., Chi, X., & Zhang, R. (2012). Optimization of exopolysaccharides production from a novel strain of Ganoderma lucidum CAU5501 in submerged culture. Brazilian Journal of Microbiology, 43(2), 490–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alves, V. D., Freitas, F., Torres, C. A. V., Cruz, M., Marques, R., Grandfils, C., Gonçalves, M. P., Oliveira, R., & Reis, M. A. M. (2010). Rheological and morphological characterization of the culture broth during exopolysaccharide production by Enterobacter sp. Carbohydrate Polymers, 81(4), 758–764.

    Article  CAS  Google Scholar 

  40. Yang, S. T., Lo, Y. M., & Min, D. B. (1996). Xanthan gum fermentation by Xanthomonascampestris immobilized in a novel centrifugal fibrous-bed bioreactor. Biotechnology Progress, 12(5), 630–637.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the facility support of the Institute of Biomedical and Food Safety at CJ Food Safety Hall, Korea University.

Funding

This work was supported by the Mid-career Researcher Program from the National Research Foundation of Korea (2020R1A2B5B02002631). IJK acknowledges the grant support from the Research Fellow Program through NRF (2017R1A6A3A11030496).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Su Jin or Kyoung Heon Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H.M., Kim, I.J., Yun, E.J. et al. Overproduction of Exopolysaccharide Colanic Acid by Escherichia coli by Strain Engineering and Media Optimization. Appl Biochem Biotechnol 193, 111–127 (2021). https://doi.org/10.1007/s12010-020-03409-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03409-4

Keywords

Navigation