Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Andrographolide Mitigates Unfolded Protein Response Pathway and Apoptosis Involved in Chikungunya Virus Infection

Author(s): Swati Gupta, Kamla Prasad Mishra, Bhuvnesh Kumar, Shashi Bala Singh and Lilly Ganju*

Volume 24, Issue 6, 2021

Published on: 18 August, 2020

Page: [849 - 859] Pages: 11

DOI: 10.2174/1386207323999200818165029

Price: $65

Abstract

Background: Chikungunya virus (CHIKV) is an arthropod-borne RNA virus which induces host Endoplasmic Reticulum (ER) stress by accumulating unfolded or misfolded proteins. ER stress activates the unfolded protein response (UPR) pathway to enable proper protein folding and maintain cellular homeostasis. There is no approved drug or vaccine available for CHIKV treatment, therefore, a pharmacological countermeasure is warranted for preventing CHIKV infection.

Objective: With a view to find a treatment modality for chikungunya infection, “andrographolide”, a plant-derived diterpenoid with reported antiviral, anti-inflammatory and immunomodulatory effects, was used to investigate its role in chikungunya induced unfolded protein stress and apoptosis.

Methods: Cells and supernatant collected on andrographolide and VER-155008, a GRP78 inhibitor, treatment in CHIKV infected and mock-infected THP-1 cells were tested for differential expression of UPR pathway proteins including GRP78, PERK, EIF-2α, IRE-1α, XBP-1 and ATF6. Furthermore, the inflammasome and apoptosis pathway proteins, i.e., caspase-1, caspase-3 and PARP, were tested by immunoblotting, and cytokines, i.e., IL-1β, IL-6 and IFN-γ were tested by ELISA.

Results: Andrographolide treatment in CHIKV infected THP-1 cells significantly reduced IRE1α and downstream spliced XBP1 protein expression. Furthermore, CHIKV induced apoptosis and viral protein expression were also reduced on andrographolide treatment. A comparative analysis of andrographolide versus VER-155008, confirmed that andrographolide surpasses the effects of VER-155008 in suppressing the CHIKV induced ER stress.

Conclusion: The study, therefore, confirms that andrographolide is a potential remedy for chikungunya infection and suppresses CHIKV induced ER stress and apoptosis.

Keywords: Andrographolide, unfolded protein response, chikungunya, apoptosis, VER-155008, GRP78, IRE1α, Caspase 3.

[1]
Caglioti, C.; Lalle, E.; Castilletti, C.; Carletti, F.; Capobianchi, M.R.; Bordi, L. Chikungunya virus infection: an overview. New Microbiol., 2013, 36(3), 211-227.https://doi.org/https://www.ncbi.nlm.nih.gov/pubmed/23912863
[PMID: 23912863]
[2]
Zhang, K.; Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature, 2008, 454(7203), 455-462.
[http://dx.doi.org/10.1038/nature07203] [PMID: 18650916]
[3]
Grootjans, J.; Kaser, A.; Kaufman, R.J.; Blumberg, R.S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol., 2016, 16(8), 469-484.
[http://dx.doi.org/10.1038/nri.2016.62] [PMID: 27346803]
[4]
Diwaker, D.; Mishra, K.P.; Ganju, L. Effect of modulation of unfolded protein response pathway on dengue virus infection. Acta Biochim. Biophys. Sin. (Shanghai), 2015, 47(12), 960-968.
[http://dx.doi.org/10.1093/abbs/gmv108] [PMID: 26515795]
[5]
Nishitoh, H. CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem., 2012, 151(3), 217-219.
[http://dx.doi.org/10.1093/jb/mvr143] [PMID: 22210905]
[6]
Zhang, L.; Wang, A.; Virus-Induced, E.R. Virus-induced ER stress and the unfolded protein response. Front. Plant Sci., 2012, 3, 293.
[http://dx.doi.org/10.3389/fpls.2012.00293] [PMID: 23293645]
[7]
Chan, S-W. The unfolded protein response in virus infections. Front. Microbiol., 2014, 5, 518.
[http://dx.doi.org/10.3389/fmicb.2014.00518] [PMID: 25324837]
[8]
Rathore, A.P.S.; Ng, M-L.; Vasudevan, S.G. Differential unfolded protein response during Chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2α phosphorylation. Virol. J., 2013, 10(1), 36.
[http://dx.doi.org/10.1186/1743-422X-10-36] [PMID: 23356742]
[9]
Fros, J.J.; Major, L.D.; Scholte, F.E.M.; Gardner, J.; van Hemert, M.J.; Suhrbier, A.; Pijlman, G.P. Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response. J. Gen. Virol., 2015, 96(Pt 3), 580-589.
[http://dx.doi.org/10.1099/vir.0.071845-0] [PMID: 25395592]
[10]
Rana, J.; Gulati, S.; Rajasekharan, S.; Gupta, A.; Chaudhary, V.; Gupta, S. Identification of potential molecular associations between chikungunya virus non-structural protein 2 and human host proteins. Acta Virol., 2017, 61(1), 39-47.
[http://dx.doi.org/10.4149/av_2017_01_39] [PMID: 28105853]
[11]
Abraham, R.; Mudaliar, P.; Jaleel, A.; Srikanth, J.; Sreekumar, E. High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J. Proteomics, 2015, 120, 126-141.
[http://dx.doi.org/10.1016/j.jprot.2015.03.007] [PMID: 25782748]
[12]
Nayak, T.K.; Mamidi, P.; Kumar, A.; Singh, L.P.K.; Sahoo, S.S.; Chattopadhyay, S.; Chattopadhyay, S. Regulation of viral replication, apoptosis and pro-inflammatory responses by 17-aag during chikungunya virus infection in macrophages. Viruses, 2017, 9(1), E3.
[http://dx.doi.org/10.3390/v9010003] [PMID: 28067803]
[13]
Gupta, S.; Mishra, K.P.; Ganju, L. Broad-spectrum antiviral properties of andrographolide. Arch. Virol., 2017, 162(3), 611-623.
[http://dx.doi.org/10.1007/s00705-016-3166-3] [PMID: 27896563]
[14]
Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front. Plant Sci., 2015, 6(August), 655.
[http://dx.doi.org/10.3389/fpls.2015.00655] [PMID: 26379683]
[15]
Paemanee, A.; Hitakarun, A.; Wintachai, P.; Roytrakul, S.; Smith, D.R. A proteomic analysis of the anti-dengue virus activity of andrographolide. Biomed. Pharmacother., 2019, 109, 322-332.
[http://dx.doi.org/10.1016/j.biopha.2018.10.054] [PMID: 30396090]
[16]
Gupta, S.; Mishra, K.P.; Dash, P.K.; Parida, M.; Ganju, L.; Singh, S.B. Andrographolide inhibits chikungunya virus infection by up-regulating host innate immune pathways. Asian Pac. J. Trop., 2018, 11(1), 2018.
[http://dx.doi.org/10.4103/1995-7645.228436]
[17]
Wintachai, P.; Kaur, P.; Lee, R.C.H.; Ramphan, S.; Kuadkitkan, A.; Wikan, N.; Ubol, S.; Roytrakul, S.; Chu, J.J.H.; Smith, D.R. Activity of andrographolide against chikungunya virus infection. Sci. Rep., 2015, 5, 14179.
[http://dx.doi.org/10.1038/srep14179] [PMID: 26384169]
[18]
Gupta, S.; Mishra, K.P.; Singh, S.B.; Ganju, L. Inhibitory effects of andrographolide on activated macrophages and adjuvant-induced arthritis. Inflammopharmacology, 2017, 26(2), 447-456.
[http://dx.doi.org/10.1007/s10787-017-0375-7] [PMID: 28735448]
[19]
Gupta, S.; Mishra, K.P.; Kumar, B.; Singh, S.B.; Ganju, L. Andrographolide attenuates complete freund’s adjuvant induced arthritis via suppression of inflammatory mediators and pro-inflammatory cytokines. J. Ethnopharmacol., 2020, 261, 113022.
[http://dx.doi.org/10.1016/j.jep.2020.113022] [PMID: 32569719]
[20]
Massey, A.J.; Williamson, D.S.; Browne, H.; Murray, J.B.; Dokurno, P.; Shaw, T.; Macias, A.T.; Daniels, Z.; Geoffroy, S.; Dopson, M.; Lavan, P.; Matassova, N.; Francis, G.L.; Graham, C.J.; Parsons, R.; Wang, Y.; Padfield, A.; Comer, M.; Drysdale, M.J.; Wood, M. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother. Pharmacol., 2010, 66(3), 535-545.
[http://dx.doi.org/10.1007/s00280-009-1194-3] [PMID: 20012863]
[21]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[22]
Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA, 1979, 76(9), 4350-4354.
[http://dx.doi.org/10.1073/pnas.76.9.4350] [PMID: 388439]
[23]
Liu, Y.; Guan, X.; Li, C.; Ni, F.; Luo, S.; Wang, J.; Zhang, D.; Zhang, M.; Hu, Q. HSV-2 glycoprotein J promotes viral protein expression and virus spread. Virology, 2018, 525, 83-95.
[http://dx.doi.org/10.1016/j.virol.2018.09.004] [PMID: 30248525]
[24]
Khongwichit, S.; Wikan, N.; Abere, B.; Thepparit, C.; Kuadkitkan, A.; Ubol, S.; Smith, D.R. Cell-type specific variation in the induction of ER stress and downstream events in chikungunya virus infection. Microb. Pathog., 2016, 101, 104-118.
[http://dx.doi.org/10.1016/j.micpath.2016.11.009] [PMID: 27863885]
[25]
Ong, H.K.; Soo, B.P.C.; Chu, K.L.; Chao, S-H. XBP-1, a cellular target for the development of novel anti-viral strategies. Curr. Protein Pept. Sci., 2018, 19(2), 145-154.
[http://dx.doi.org/10.2174/1389203718666170911144812] [PMID: 28901250]
[26]
Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol., 2009, 10(3), 241-247.
[http://dx.doi.org/10.1038/ni.1703] [PMID: 19221555]
[27]
Los, M.; Mozoluk, M.; Ferrari, D.; Stepczynska, A.; Stroh, C.; Renz, A.; Herceg, Z.; Wang, Z-Q.; Schulze-Osthoff, K. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell, 2002, 13(3), 978-988.
[http://dx.doi.org/10.1091/mbc.01-05-0272] [PMID: 11907276]
[28]
Krejbich-Trotot, P.; Denizot, M.; Hoarau, J-J.; Jaffar-Bandjee, M-C.; Das, T.; Gasque, P. Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. FASEB J., 2011, 25(1), 314-325.
[http://dx.doi.org/10.1096/fj.10-164178] [PMID: 20881210]
[29]
Braakman, I.; Hebert, D.N. Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol., 2013, 5(5), a013201.
[http://dx.doi.org/10.1101/cshperspect.a013201] [PMID: 23637286]
[30]
Paingankar, M.S.; Arankalle, V.A. Identification of chikungunya virus interacting proteins in mammalian cells. J. Biosci., 2014, 39(3), 389-399.
[http://dx.doi.org/10.1007/s12038-014-9436-x] [PMID: 24845503]
[31]
Das, I.; Basantray, I.; Mamidi, P.; Nayak, T.K.; B M, P.; Chattopadhyay, S.; Chattopadhyay, S. Heat shock protein 90 positively regulates Chikungunya virus replication by stabilizing viral non-structural protein nsP2 during infection. PLoS One, 2014, 9(6), e100531.
[http://dx.doi.org/10.1371/journal.pone.0100531] [PMID: 24959709]
[32]
Rathore, A.P.S.; Haystead, T.; Das, P.K.; Merits, A.; Ng, M-L.; Vasudevan, S.G. Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo. Antiviral Res., 2014, 103, 7-16.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.010] [PMID: 24388965]
[33]
Banerjee, A.; Banerjee, V.; Czinn, S.; Blanchard, T. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells. Oncotarget, 2017, 8(16), 26142-26153.
[http://dx.doi.org/10.18632/oncotarget.15393] [PMID: 28412728]
[34]
Banerjee, A.; Ahmed, H.; Yang, P.; Czinn, S.J.; Blanchard, T.G. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment. Oncotarget, 2016, 7(27), 41432-41444.
[http://dx.doi.org/10.18632/oncotarget.9180] [PMID: 27166181]
[35]
Dhanwani, R.; Khan, M.; Bhaskar, A.S.B.; Singh, R.; Patro, I.K.; Rao, P.V.L.; Parida, M.M. Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus Res., 2012, 163(2), 563-572.
[http://dx.doi.org/10.1016/j.virusres.2011.12.009] [PMID: 22210004]
[36]
Fribley, A.; Zhang, K.; Kaufman, R.J. Regulation of apoptosis by the unfolded protein response. Methods Mol. Biol., 2009, 559, 191-204.
[http://dx.doi.org/10.1007/978-1-60327-017-5_14] [PMID: 19609758]
[37]
Sano, R.; Reed, J.C.E.R. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta, 2013, 1833(12), 3460-3470.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.028] [PMID: 23850759]
[38]
Yoneda, T.; Imaizumi, K.; Oono, K.; Yui, D.; Gomi, F.; Katayama, T.; Tohyama, M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem., 2001, 276(17), 13935-13940.
[http://dx.doi.org/10.1074/jbc.M010677200] [PMID: 11278723]
[39]
Morishima, N.; Nakanishi, K.; Takenouchi, H.; Shibata, T.; Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem., 2002, 277(37), 34287-34294.
[http://dx.doi.org/10.1074/jbc.M204973200] [PMID: 12097332]
[40]
Shemorry, A.; Harnoss, J.M.; Guttman, O.; Marsters, S.A.; Kőműves, L.G.; Lawrence, D.A.; Ashkenazi, A. Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress. eLife, 2019, 8, e47084.
[http://dx.doi.org/10.7554/eLife.47084] [PMID: 31453810]
[41]
Lupfer, C.; Malik, A.; Kanneganti, T-D. Inflammasome control of viral infection. Curr. Opin. Virol., 2015, 12, 38-46.
[http://dx.doi.org/10.1016/j.coviro.2015.02.007] [PMID: 25771504]
[42]
Lamkanfi, M.; Dixit, V.M. Modulation of inflammasome pathways by bacterial and viral pathogens. J. Immunol., 2011, 187(2), 597-602.
[http://dx.doi.org/10.4049/jimmunol.1100229] [PMID: 21734079]
[43]
Shrivastava, G.; León-Juárez, M.; García-Cordero, J.; Meza-Sánchez, D.E.; Cedillo-Barrón, L. Inflammasomes and its importance in viral infections. Immunol. Res., 2016, 64(5-6), 1101-1117.
[http://dx.doi.org/10.1007/s12026-016-8873-z] [PMID: 27699580]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy