Skip to main content
Log in

Compositional Features and Codon Usage Pattern of Genes Associated with Anxiety in Human

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Codon usage bias (CUB) is the unequal usage of synonymous codon; some codons are more preferred than others. CUB analysis has applications in understanding the molecular organization of genome, genetics, gene expression, and molecular evolution. Bioinformatic approach was used to analyze the protein-coding sequences of genes involved in the anxiety to understand the patterns of codon usage as no work was reported yet. The improved effective number of codons (Nc) values ranged from 43.55 to 55.06, with a mean of 44.57, suggested that the overall CUB was low for genes associated with anxiety. The overall GC and AT content was 54.76 and 45.24, respectively. Relative synonymous codon usage (RSCU) analysis revealed that most frequently used codon ended mostly with C or G. The over-represented codons in genes associated with anxiety were CTG, ATC, GTG, AGC, ACC, and GCC, while under-represented codons were TTA, CTT, CTA, ATA, GTT, GTA, TCG, CCG, GCG, CAA, and CGT. Correlation analysis was performed between overall nucleotide composition and its 3rd codon positions, and observed highly significant (p < 0.01) correlation between them suggested that both mutation pressure and natural selection might affect the pattern of CUB. The highly significant correlation (0.598**, p < 0.01) was also observed between GC12 with GC3 suggested that directional mutation pressure might acted on all codon positions for genes associated with anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kjernisted KD, Bleau P (2004) Long-term goals in the management of acute and chronic anxiety disorders. Can J Psychiatr 49:51–63

    Google Scholar 

  2. Weinberger DR (2001) Anxiety at the frontier of molecular medicine. N Engl J Med 344:1247–1249

    CAS  PubMed  Google Scholar 

  3. Clément Y, Calatayud F, Belzung C (2002) Genetic basis of anxiety-like behaviour: a critical review. Brain Res Bull 57:57–71

    PubMed  Google Scholar 

  4. Gupta V, Bansal P, Kumar S, Sannd R, Rao M (2010) Therapeutic efficacy of phytochemicals as anti-anxiety-a review. J Pharm Res 3:174–179

    Google Scholar 

  5. Jung JW, Yoon BH, Oh HR, Ahn J-H, Kim SY, Park S-Y, Ryu JH (2006) Anxiolytic-like effects of Gastrodia elata and its phenolic constituents in mice. Biol Pharm Bull 29:261–265

    CAS  PubMed  Google Scholar 

  6. Leon AC, Portera L, Weissman MM (1995) The social costs of anxiety disorders. Br J Psychiatry 166:19–22

    Google Scholar 

  7. Beuzen A, Belzung C (1995) Link between emotional memory and anxiety states: a study by principal component analysis. Physiol Behav 58:111–118

    CAS  PubMed  Google Scholar 

  8. Weeks BS (2009) Formulations of dietary supplements and herbal extracts for relaxation and anxiolytic action: Relarian. Med Sci Monit 15:RA256–RA262

    PubMed  Google Scholar 

  9. Nestoros JN (1984) GABAergic mechanisms and anxiety: an overview and a new neurophysiological model. Can J Psychiatr 29:520–529

    CAS  Google Scholar 

  10. Khanum F, Razack S (2010) Anxiety–herbal treatment: a review. Res Rev Biomed Biotech 1:83–89

    Google Scholar 

  11. Barchas JD (1998) Biochemical hypotheses of mood and anxiety disorders. Basic neurochemistry: molecular, cellular and medical aspects (CD-ROM)

  12. Morris-Rosendahl DJ (2002) Are there anxious genes? Dialogues Clin Neurosci 4:251

    PubMed  PubMed Central  Google Scholar 

  13. Lesch K, Greenberg B, Higley J, Bennett A, Murphy D (2002) Serotonin transporter, personality, and behavior: toward dissection of gene–gene and gene–environment interaction. Mol Genet Human Personal:109–136

  14. Bennetzen JL, Hall B (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    CAS  PubMed  Google Scholar 

  15. Plotkin JB, Robins H, Levine AJ (2004) Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci U S A 101:12588–12591

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12:640–649

    CAS  PubMed  Google Scholar 

  17. Biro JC (2008) Studies on the origin and evolution of codon bias. arXiv preprint arXiv:0807.3901

  18. Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    CAS  PubMed  Google Scholar 

  20. Gupta S, Ghosh T (2001) Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa. Gene 273:63–70

    CAS  PubMed  Google Scholar 

  21. Liu Q (2006) Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans. Biosystems 85:99–106

    CAS  PubMed  Google Scholar 

  22. Yang X, Luo X, Cai X (2014) Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset. Parasit Vectors 7:1–11

    Google Scholar 

  23. Ahn I, Jeong B-J, Bae S-E, Jung J, Son HS (2006) Genomic analysis of influenza A viruses, including avian flu (H5N1) strains. Eur J Epidemiol 21:511–519

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng Y, Zhao W-M, Wang H, Zhou Y-B, Luan Y, Qi M, Cheng Y-Z, Tang W et al (2007) Codon usage bias in Chlamydia trachomatis and the effect of codon modification in the MOMP gene on immune responses to vaccination. This paper is one of a selection of papers in this Special Issue, entitled International Symposium on Recent Advances in Molecular, Clinical, and Social Medicine, and has undergone the Journal's usual peer-review process. Biochem Cell Biol 85:218–226

    CAS  PubMed  Google Scholar 

  25. Kane JF (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:494–500

    CAS  PubMed  Google Scholar 

  26. Gupta S, Bhattacharyya T, Ghosh TC (2004) Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J Biomol Struct Dyn 21:527–535

    CAS  PubMed  Google Scholar 

  27. Lin K, Kuang Y, Joseph JS, Kolatkar PR (2002) Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics. Nucleic Acids Res 30:2599–2607

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Erhardt A, Czibere L, Roeske D, Lucae S, Unschuld PG, Ripke S, Specht M, Kohli MA et al (2011) TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies. Mol Psychiatry 16:647–663

    CAS  PubMed  Google Scholar 

  29. Schinka J, Busch R, Robichaux-Keene N (2004) A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Mol Psychiatry 9:197–202

    CAS  PubMed  Google Scholar 

  30. Sharp PM, Li W-H (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38

    CAS  PubMed  Google Scholar 

  31. Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29

    CAS  PubMed  Google Scholar 

  32. Satapathy SS, Sahoo AK, Ray SK, Ghosh TC (2017) Codon degeneracy and amino acid abundance influence the measures of codon usage bias: improved Nc (N̂c) and ENCprime (N̂′ c) measures. Genes Cells 22:277–283

    CAS  PubMed  Google Scholar 

  33. Grantham R, Gautier C, Gouy M (1980) Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res 8:1893–1912

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shields DC, Sharp PM (1987) Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 15:8023–8040

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sueoka N (1999) Two aspects of DNA base composition: G+ C content and translation-coupled deviation from intra-strand rule of A= T and G= C. J Mol Evol 49:49–62

    CAS  PubMed  Google Scholar 

  36. Sueoka N (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40:318–325

    CAS  PubMed  Google Scholar 

  37. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  38. Puigbò P, Bravo IG, Garcia-Vallve S (2008) CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 3:1–8

    Google Scholar 

  39. Moura G, Pinheiro M, Arrais J, Gomes AC, Carreto L, Freitas A, Oliveira JL, Santos MA (2007) Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLoS One 2:e847

    PubMed  PubMed Central  Google Scholar 

  40. Zhang Z, Dai W, Dai D (2013) Synonymous codon usage in TTSuV2: analysis and comparison with TTSuV1. PLoS One 8:e81469

    PubMed  PubMed Central  Google Scholar 

  41. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92:1–7

    CAS  PubMed  Google Scholar 

  42. Behura SK, Severson DW (2012) Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes. PLoS One 7:e43111

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei L, He J, Jia X, Qi Q, Liang Z, Zheng H, Ping Y, Liu S et al (2014) Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution. BMC Evol Biol 14:262

    PubMed  PubMed Central  Google Scholar 

  44. Uddin A, Chakraborty S (2016) Codon usage trend in mitochondrial CYB gene. Gene 586:105–114

    CAS  PubMed  Google Scholar 

  45. Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci 85:2653–2657

    CAS  PubMed  Google Scholar 

  46. Zhao Y, Zheng H, Xu A, Yan D, Jiang Z, Qi Q, Sun J (2016) Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution. BMC Genomics 17:677

    PubMed  PubMed Central  Google Scholar 

  47. Uddin M, Kabir M, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR et al (2020) Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules 25:1267

    CAS  PubMed Central  Google Scholar 

  48. Uddin A, Chakraborty S (2018) Codon usage pattern of genes involved in central nervous system. Mol Neurobiol:1–12

  49. Fuller SJ, Sohrabi HR, Goozee KG, Sankaranarayanan A, Martins RN (2019) Alzheimer's disease and other neurodegenerative diseases. Neurodegener Alzheimer Dis:9–42

  50. Choudhury MN, Uddin A, Chakraborty S (2017) Codon usage bias and its influencing factors for Y-linked genes in human. Comput Biol Chem

  51. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16:990–995

    CAS  PubMed  Google Scholar 

  52. Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247

    CAS  PubMed  Google Scholar 

  53. Choudhury MN, Chakraborty S (2015) Codon usage pattern in human SPANX genes. Bioinformation 11:454–459

    PubMed  PubMed Central  Google Scholar 

  54. Uddin A, Chakraborty S (2015) Synonymous codon usage pattern in mitochondrial CYB gene in pisces, aves, and mammals. Mitochondrial DNA:1–10

Download references

Acknowledgments

The author thanks Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, for providing necessary facilities.

Data Accessibility

All data are available in the manuscript and the supplementary file.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Uddin.

Ethics declarations

Conflict of Interest

The author declares no conflict of interests in this work.

Ethical Approval

The study is based on DNA sequence–based analysis. Ethical clearance is not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(TXT 324 kb)

ESM 2

(DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, A. Compositional Features and Codon Usage Pattern of Genes Associated with Anxiety in Human. Mol Neurobiol 57, 4911–4920 (2020). https://doi.org/10.1007/s12035-020-02068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02068-0

Keywords

Navigation