Skip to main content
Log in

Molecular characterization of a novel fusarivirus infecting the edible fungus Auricularia heimuer

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Here, we describe a novel mycovirus, Auricularia heimuer fusarivirus 1 (AhFV1), isolated from the edible fungus Auricularia heimuer strain CCMJ1296. The virus has a single-stranded positive-sense [+ssRNA] genome of 7,127 nucleotides containing two overlapping open reading frames (ORFs) and a poly(A) tail. The large ORF1 encodes a polyprotein of 1,637 amino acids (aa) with conserved RNA-dependent RNA polymerase (RdRp) and DEAD-like helicase superfamily (DEXDc) domains. ORF2 encodes a putative 633-aa protein with unknown function. A BLAST search showed that the nucleotide sequence of the AhFV1 genome is 41.28% identical to that of Sclerotium rolfsii fusarivirus 2 and 40.49% identical to that of Sclerotium rolfsii fusarivirus 1. Phylogenetic analysis based on RdRp and helicase (Hel) sequences indicated that AhFV1 is related to unclassified mycoviruses and other fusariviruses. Our data suggest that AhFV1 should be classified as a member of the newly proposed family “Fusariviridae”. This is the second virus and the first full genome sequence of a fusarivirus from A. heimuer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yaegashi H, Kanematsu S, Ito T (2012) Molecular characterization of a new hypovirus infecting a phytopathogenic, Valsa ceratosperma. Virus Res 165(2):143–150

    Article  CAS  PubMed  Google Scholar 

  2. Wang M, Wang Y, Sun X et al (2015) Characterization of a novel megabirnavirus from Sclerotinia sclerotiorum reveals horizontal gene transfer from ssRNA virus to dsRNA virus. J Virol 89(16):8567–8579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin Y, Fujita M, Chiba S et al (2019) Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes). Virology 533:125–136

    Article  CAS  PubMed  Google Scholar 

  4. Revill PA, Wright PJ (1997) RT-PCR detection of dsRNAs associated with La France disease of the cultivated mushroom Agaricus bisporus (Lange) imbach. J Virol Methods 63:17–26

    Article  CAS  PubMed  Google Scholar 

  5. Yu H, Lee J, Lee N et al (2004) Identification of three isometric viruses from Pleurotus ostreatus (Running title: ssRNA and dsRNA viruses of oyster mushroom, (Pleurotus ostreatus). J Huazhong Agric 23(1):150–156

    CAS  Google Scholar 

  6. Liu R, Cheng J, Fu Y et al (2015) Molecular characterization of a novel positive-sense, single-stranded RNA virus infecting the plant pathogenic fungus Sclerotinia sclerotiorum. Viruses 7(5):2470–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang R, Liu S, Chiba S et al (2014) A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses. Front Microbiol 5:360

    PubMed  PubMed Central  Google Scholar 

  8. Liu H, Fu Y, Jiang D et al (2010) Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J Virol 84(22):11876–11887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grogan HM, Adie BAT, Gaze RH et al (2003) Double-stranded RNA elements associated with the MVX disease of Agaricus bisporus. Mycol Res 107(2):147–154

    Article  CAS  PubMed  Google Scholar 

  10. Ghabrial SA, Castón JR, Jiang D et al (2015) 50-plus years of fungal viruses. Virology 479:356–368

    Article  PubMed  Google Scholar 

  11. Yu X, Li B, Fu Y et al (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci 107(18):8387–8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu X, Li B, Fu Y et al (2013) Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc Natl Acad Sci 110(4):1452–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu L, Xie J, Cheng J et al (2014) Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc Natl Acad Sci USA 111(33):12205–12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang L, He H, Wang S et al (2018) Evidence for a novel negative-stranded RNA mycovirus isolated from the plant pathogenic fungus Fusarium graminearum. Virology 518:232–240

    Article  CAS  PubMed  Google Scholar 

  15. Li K, Zheng D, Cheng J et al (2016) Characterization of a novel Sclerotinia sclerotiorum RNA virus as the prototype of a new proposed family within the order Tymovirales. Virus Res 219:92–99

    Article  CAS  PubMed  Google Scholar 

  16. Hamid M, Xie J, Wu S et al (2018) A novel deltaflexivirus that infects the plant fungal pathogen, Sclerotinia sclerotiorum, can be transmitted among host vegetative incompatible strains. Viruse 10(6):295

    Article  Google Scholar 

  17. Liu W, Hai D, Mu F et al (2020) Molecular characterization of a novel fusarivirus infecting the plant-pathogenic fungus Botryosphaeria dothidea. Adv Virol 165(4):1033–1037

    CAS  Google Scholar 

  18. Wu Q, Tan Z, Liu H et al (2010) Chemical characterization of Auricularia auricula polysaccharides and its pharmacological effect on heart antioxidant enzyme activities and left ventricular function in aged mice. Int J Biol Macromol 46(3):284–288

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen L, Wang D, Hu D et al (2012) Immuno-enhancing activity of sulfated Auricularia auricula polysaccharides. Carbohyd Polym 89(4):1117–1122

    Article  CAS  Google Scholar 

  20. Yuan Y, Wu F, Si J et al (2017) Whole genome sequence of Auricularia heimuer, (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics 2017:S0888754317301830

    Google Scholar 

  21. Hollings M (1962) Viruses associated with a die-back disease of cultivated mushroom. Nature 196:962–965

    Article  Google Scholar 

  22. Elibuyuk IO, Bostan H (2010) Detection of a virus disease on white button mushroom (Agaricus bisporus) in Ankara, Turkey. Int J Agric Biol 12:597–600

    CAS  Google Scholar 

  23. Magae Y, Sunagawa M (2010) Characterization of a mycovirus associated with the brown discoloration of edible mushroom, Flammulina velutipes. Virol J 7(1):342

    Article  PubMed  PubMed Central  Google Scholar 

  24. Magae Y, Hayashi N (1999) Double-stranded RNA and virus-like particles in the edible basidiomycete Flammulina velutipes (Enokitake). FEMS Microbiol Lett 180:331–335

    Article  CAS  PubMed  Google Scholar 

  25. Won HK, Park SJ, Kim DK et al (2013) Isolation and characterization of a mycovirus in Lentinula edodes. J Microbiol 51(1):118–122

    Article  CAS  PubMed  Google Scholar 

  26. Barroso G, Labarère J (1990) Evidence for viral and naked double-stranded RNAs in the basidiomycete Agrocybe aegerita. Curr Genet 18(3):231–237

    Article  CAS  Google Scholar 

  27. Chang Y, Chen J, Chang K et al (2018) Cloning and expression of the lectin gene from the mushroom Agrocybe aegerita and the activities of recombinant lectin in the resistance of shrimp white spot syndrome virus infection. Dev Comp Immunol 90:1–9

    Article  PubMed  Google Scholar 

  28. Ro HS, Lee NJ, Lee CW et al (2006) Isolation of novel mycovirus OMIV in Pleurotus ostreatus and its detection using a triple antibody sandwich-ELISA. J Virol Methods 138:24–29

    Article  CAS  PubMed  Google Scholar 

  29. Yu HJ, Lim D, Lee HS (2003) Characterization of a novel single-stranded RNA mycovirus in Pleurotus ostreatus. Virology 314(1):9–15

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Xie J, Hai D et al (2020) Molecular characteristics of a novel ssRNA virus isolated from Auricularia heimuer in China. Adv Virol 165(6):1495–1499

    CAS  Google Scholar 

  31. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30(15):2114–2120

    Article  CAS  Google Scholar 

  32. Yuan Y, Wu F, Si J et al (2017) Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide. Genomics 2017:S0888754317301830

    Google Scholar 

  33. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Darissa O, Willingmann P, Günter A (2010) Optimized approaches for the sequence determination of double-stranded RNA templates. J Virol Methods 169(2):397–403

    Article  CAS  PubMed  Google Scholar 

  36. Lambden PR, Cooke SJ, Caul EO et al (1992) Cloning of noncultivatable human rotavirus by single primer amplification. J Virol 66(3):1817–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kazutaka K, Standley DM (2016) A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics 13:1933–1942

    Google Scholar 

  38. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  39. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  CAS  PubMed  Google Scholar 

  40. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

The National Key Research and Development Program of China (2018YFD1001000, 2017YFD0601002), the Special Fund for Agro-Scientific Research in the Public Interest (201503137), the Jilin Provincial Department of Education (JJKH20180670KJ), and the Program of Introducing Talents of Discipline to Universities (D17014) supported this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Song or Yu Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

This article does not contain any studies involving human participants or animals.

Additional information

Handling Editor: Ioly Kotta-Loizou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2020_4781_MOESM1_ESM.png

Fig. S1 Comparison of the conserved RdRp amino acid motif of AhFV1 with those of representative viruses of the proposed family “Fusariviridae

705_2020_4781_MOESM2_ESM.png

Fig. S2 Comparison of the conserved Hel amino acid motif of AhFV1 with those of representative viruses of the proposed family “Fusariviridae

Supplementary material 3 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Sui, K., Xie, J. et al. Molecular characterization of a novel fusarivirus infecting the edible fungus Auricularia heimuer. Arch Virol 165, 2689–2693 (2020). https://doi.org/10.1007/s00705-020-04781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04781-6

Navigation