Skip to main content
Log in

Density Dependence of Nuclear Matter Symmetry Energy: VMC Calculations

  • ELEMENTARY PARTICLES AND FIELDS
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A Variational Monte-Carlo (VMC) method is employed to investigate the density dependence of the symmetry energy of isospin asymmetric nuclear matter. The realistic Urbana \(V\)14 nucleon–nucleon interaction potential of Lagaris and Pandharipande was used in the VMC calculations with addition of a phenomenological density-dependent term to simulate many-body interactions. The symmetry energy is obtained for different densities and compared with the data found in the literature, and it was observed that the results obtained in this study reasonably agree with the results found in the literature, and the symmetry energy is found to increase almost linearly with the density. We obtained the symmetry energy coefficient at saturation density \(\rho=0.16\) fm\({}^{-3}\) to be about 26.89 MeV, which is in agreement with the empirical value 30 \(\pm\) 4 MeV. Also, the incompressibility factor of the nuclear matter and the equation of the state of pure neutron matter were reported. The results obtained are consistent with those obtained by various authors with different potentials and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. B. D. Day, Phys. Rev. Lett. 47, 226 (1981). https://doi.org/10.1103/PhysRevLett.47.226

    Article  ADS  Google Scholar 

  2. I. E. Lagaris and V. R. Pandharipande, Nucl. Phys. A 359, 331 (1981). https://doi.org/10.1016/0375-9474(81)90240-2

    Article  ADS  Google Scholar 

  3. I. E. Lagaris and V. R. Pandharipande, Nucl. Phys. A 359, 349 (1981). https://doi.org/10.1016/0375-9474(81)90241-4

    Article  ADS  Google Scholar 

  4. R. Brockmann and R. Machleidt, Phys. Rev. C 42, 1965 (1990). https://doi.org/10.1103/PhysRevC.42.1965

    Article  ADS  Google Scholar 

  5. R. V. Reid, Ann. Phys. 50, 411 (1968). https://doi.org/10.1016/0003-4916(68)90126-7

    Article  ADS  Google Scholar 

  6. K. Manisa, Phys. At. Nucl. 74, 958 (2011). https://doi.org/10.1134/S1063778811070106

    Article  Google Scholar 

  7. W. L. McMillan, Phys. Rev. A 442, 138 (1965). https://doi.org/10.1103/PhysRev.138.A442

    Article  Google Scholar 

  8. D. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 16, 3081 (1977). https://doi.org/10.1103/PhysRevB.16.3081

    Article  ADS  Google Scholar 

  9. M. A. Lee, K. E. Schmidt, M. H. Kalos, and G. V. Chester, Phys. Rev. Lett. 46, 728 (1981). https://doi.org/10.1103/PhysRevLett.46.728

    Article  ADS  Google Scholar 

  10. Ü. Atav and R. Oğul, Phys. Scr. 61, 52 (2000). https://doi.org/10.1238/Physica.Regular.061a00052

    Article  ADS  Google Scholar 

  11. J. Lomnitz-Adler, V. R. Pandharipande, and R. A. Smith, Nucl. Phys. A 361, 399 (1981). https://doi.org/10.1016/0375-9474(81)90642-4

    Article  ADS  Google Scholar 

  12. J. Carlson, Phys. Rev. C 38, 1879 (1988). https://doi.org/10.1103/PhysRevC.38.1879

    Article  ADS  Google Scholar 

  13. B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008). https://doi.org/10.1016/j.physrep.2008.04.005

    Article  ADS  Google Scholar 

  14. Kh. S. A. Hassaneen, H. M. Abo-Elsebaa, E. A. Sultan, and H. M. M. Mansour, Ann. Phys. 326, 566 (2011). https://doi.org/10.1016/j.aop.2010.11.010

    Article  ADS  Google Scholar 

  15. A. E. L. Dieperink and P. Van Isacker, Eur. Phys. J. A 32, 11 (2007). https://doi.org/10.1140/epja/i2007-10360-3

    Article  ADS  Google Scholar 

  16. Kh. S. A. Hassaneen and H. Müther, Phys. Rev. C 70, 054308 (2004). https://doi.org/10.1103/PhysRevC.70.054308

    Article  ADS  Google Scholar 

  17. Kh. Gad and Kh. S. A. Hassanen, Nucl. Phys. A 793, 67 (2007). https://doi.org/10.1016/j.nuclphysa.2007.06.015

    Article  ADS  Google Scholar 

  18. Kh. S. A. Hassanen and Kh. Gad, J. Phys. Soc. Jpn. 77, 084201 (2008). https://doi.org/10.1143/JPSJ.77.084201

    Article  ADS  Google Scholar 

  19. P. Gögelein, E. N. E. Van Dalen, Kh. Gad, Kh. S. A. Hassanen, and H. Müther, Phys. Rev. C 79, 024308 (2009). https://doi.org/10.1103/PhysRevC.79.024308

    Article  ADS  Google Scholar 

  20. D. V. Shetty, S. J. Yennello, and G. A. Souliotis, Phys. Rev. C 76, 024606 (2007). https://doi.org/10.1103/PhysRevC.76.024606

    Article  ADS  Google Scholar 

  21. K. Manisa, Ü. Atav, and R. Oğul, Int. J. Mod. Phys. E 14, 255 (2005). https://doi.org/10.1142/S0218301305003004

    Article  ADS  Google Scholar 

  22. K. Manisa, Ü. Atav, and S. Sarıaydın, Cent. Eur. J. Phys. 8, 587 (2010). https://doi.org/10.2478/s11534-009-0129-2

    Article  Google Scholar 

  23. F. Manisa, A. Küçükbursa, K. Manisa, and T. Babacan, Math. Comput. Appl. 16, 414 (2011). https://doi.org/10.3390/mca16020414

    Article  Google Scholar 

  24. A. Biçer and K. Manisa, Math. Comput. Appl. 16, 900 (2011). https://doi.org/10.3390/mca16040900

    Article  Google Scholar 

  25. K. Manisa, Sci. Chin. Phys. Mech. Astron. 55, 443 (2012). https://doi.org/10.1007/s11433-012-4652-6

    Article  ADS  Google Scholar 

  26. K. Manisa, M. Erdoğan, and S. Bostan, Rom. J. Phys. 60, 429 (2015).

    Google Scholar 

  27. K. Manisa, Rom. Rep. Phys. 68, 582 (2016)

    Google Scholar 

  28. K. Manisa, M. Erdoğan, H. Bircan, and N. Z. Er- doğan, Acta Phys. Pol. B 48, 183 (2017). https://doi.org/10.5506/APhysPolB.48.183

    Article  ADS  Google Scholar 

  29. J. D. Walecka, Ann. Phys. 83, 491 (1974). https://doi.org/10.1016/0003-4916(74)90208-5

    Article  ADS  Google Scholar 

  30. R. A. Freedman, Phys. Lett. B 71, 369 (1977). https://doi.org/10.1016/0370-2693(77)90242-8

    Article  ADS  Google Scholar 

  31. J. M. Lattimer and D. G. Revenhall, Ap. J. 223, 314 (1978). https://doi.org/10.1086/156265

    Article  ADS  Google Scholar 

  32. I. E. Lagaris and V. R. Pandharipande, Nucl. Phys. A 369, 470 (1981). https://doi.org/10.1016/0375-9474(81)90032-4

    Article  ADS  Google Scholar 

  33. D. N. Basu, P. Roy Chowdhury, and C. Samanta, Acta Phys. Pol. B 37, 2869 (2006)

    ADS  Google Scholar 

  34. A. Akmal and V. R. Pandharipande, Phys. Rev. C 56, 2261 (1997). https://doi.org/10.1103/PhysRevC.56.2261

    Article  ADS  Google Scholar 

  35. R. Jastrow, Phys. Rev. 98, 1479 (1955). https://doi.org/10.1103/PhysRev.98.1479

    Article  ADS  Google Scholar 

  36. B. D. Day, Rev. Mod. Phys. 50, 495 (1978). https://doi.org/10.1103/RevModPhys.50.495

    Article  ADS  Google Scholar 

  37. K. Oyamatsu, I. Tanihata, Y. Sugahara, K. Sumiyoshi, and H. Toki, Nucl. Phys. A 634, 3 (1998). https://doi.org/10.1016/S0375-9474(98)00125-0

    Article  ADS  Google Scholar 

  38. I. Tanihata, H. Hamagaki, O. Hashimoto, S. Nagamiya, Y. Shida, N. Yoshikawa, O. Yamakawa, K. Sugimoto, T. Kobayashi, D. E. Greiner, N. Takahashi, and Y. Nojiri, Phys. Lett. B 160, 380 (1985). https://doi.org/10.1016/0370-2693(85)90005-X

    Article  ADS  Google Scholar 

  39. I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676

    Article  ADS  Google Scholar 

  40. M. Baldo, C. Maieron, P. Schuck, and X. Vicas, Nucl. Phys. A 736, 241 (2004). https://doi.org/10.1016/j.nuclphysa.2004.03.148

    Article  ADS  Google Scholar 

  41. W. Zuo, I. Bombaci, and U. Lombardo, Phys. Rev. C 60, 024605 (1999). https://doi.org/10.1103/PhysRevC.60.024605

    Article  ADS  Google Scholar 

  42. P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Nucl. Phys. A 735, 449 (2004). https://doi.org/10.1016/j.nuclphysa.2004.02.001

    Article  ADS  Google Scholar 

  43. H. Huber, F. Weber, and M. K. Weigel, Phys. Rev. C 51, 1790 (1995). https://doi.org/10.1103/PhysRevC.51.1790

    Article  ADS  Google Scholar 

  44. B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981). https://doi.org/10.1016/0375-9474(81)90649-7

    Article  ADS  Google Scholar 

  45. V. R. Pandharipande and R. B. Wiringa, Rev. Mod. Phys. 51, 821 (1979). https://doi.org/10.1103/RevModPhys.51.821

    Article  ADS  Google Scholar 

  46. M. Prakash and T. L. Ainsworth, Phys. Rev. C 36, 346 (1987). https://doi.org/10.1103/PhysRevC.36.346

    Article  ADS  Google Scholar 

  47. H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A 637, 435 (1998). https://doi.org/10.1016/S0375-9474(98)00236-X

    Article  ADS  Google Scholar 

  48. K. A. Brueckner, S. A. Coon, and J. Dabrowski, Phys. Rev. 168, 1184 (1968). https://doi.org/10.1103/PhysRev.168.1184

    Article  ADS  Google Scholar 

  49. H. R. Moshfegh and M. Modarres, Nucl. Phys. A 759, 79 (2005). https://doi.org/10.1016/j.nuclphysa.2005.04.021

    Article  ADS  Google Scholar 

  50. B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  51. F. Weber and M. K. Wigel, Nucl. Phys. A 493, 549 (1989). https://doi.org/10.1016/0375-9474(89)90102-4

    Article  ADS  Google Scholar 

  52. P. Danielewicz, P. Singh, and J. Lee, Nucl. Phys. A 958, 147 (2017). https://doi.org/10.1016/j.nuclphysa.2016.11.008

    Article  ADS  Google Scholar 

  53. M. B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004). https://doi.org/10.1103/PhysRevLett.92.062701

    Article  ADS  Google Scholar 

  54. E. N. E. van Dalen, C. Fuchs, and A. Faessler, Nucl. Phys. A 744, 227 (2004). https://doi.org/10.1016/j.nuclphysa.2004.08.019

    Article  ADS  Google Scholar 

  55. H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000). https://doi.org/10.1016/S0370-1573(99)00110-6

    Article  ADS  Google Scholar 

  56. L. W. Chen, C. M. Ko, and B. A. Li, Phys. Rev. Lett. 94, 032701 (2005). https://doi.org/10.1103/PhysRevLett.94.032701

    Article  ADS  Google Scholar 

  57. B. A. Li and L. W. Chen, Phys. Rev. C 72, 064611 (2005). https://doi.org/10.1103/PhysRevC.72.064611

    Article  ADS  Google Scholar 

  58. J. Piekarewicz, in Proceedings of the International Conference on Current Problems in Nuclear Physics and Atomic Energy, "Neutron-Rich Nuclei in Heaven and Earth" (NPAE) (Kyiv, 2006).

  59. D. V. Shetty, S. J. Yennello, A. S. Botvina, G. A. Souliotis, M. Jandel, E. Bell, A. Keksis, S. Soisson, B. Stein, and J. Iglio, Phys. Rev. C 70, 011601 (2004). https://doi.org/10.1103/PhysRevC.70.011601

    Article  ADS  Google Scholar 

  60. M. B. Tsang, W. A. Friedman, C. K. Gelbke, W. G. Lynch, G. Verde, and H. S. Xu, Phys. Rev. Lett. 86, 5023 (2001). https://doi.org/10.1103/PhysRevLett.86.5023

    Article  ADS  Google Scholar 

  61. M. A. Famiano, T. Liu, W. G. Lynch, M. Mocko, A. M. Rogers, M. B. Tsang, M. S. Wallace, R. J. Charity, S. Komarov, D. G. Sarantites, L. G. Sobotka, and G. Verde, Phys. Rev. Lett. 97, 052701 (2006). https://doi.org/10.1103/PhysRevLett.97.052701

    Article  ADS  Google Scholar 

  62. T. Malik, K. Banerjee, T. K. Jha, and B. K. Agrawal, Phys. Rev. C 96, 035803 (2017). https://doi.org/10.1103/PhysRevC.96.035803

    Article  ADS  Google Scholar 

  63. P. Russotto et al., Phys. Rev. C 94, 034608 (2016). https://doi.org/10.1103/PhysRevC.94.034608

    Article  ADS  Google Scholar 

  64. M. Baldo and G. F. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016). https://doi.org/10.1016/j.ppnp.2016.06.006

    Article  ADS  Google Scholar 

  65. S. Gandolfi, J. Carlson, and S. Reddy, Phys. Rev. C 85, 032801 (2012). https://doi.org/10.1103/PhysRevC.85.032801

    Article  ADS  Google Scholar 

  66. T. Li et al., Phys. Rev. Lett. 99, 162503 (2007). https://doi.org/10.1103/PhysRevLett.99.162503

    Article  ADS  Google Scholar 

  67. H. Muller and B. D. Serot, Phys. Rev. C 52, 2072 (1995). https://doi.org/10.1103/PhysRevC.52.2072

    Article  ADS  Google Scholar 

  68. A. E. L. Dieperink, Y. Dewulf, D. Van Neck, M. Waroquiner, and V. Rodin, Phys. Rev. C 68, 064307 (2003). https://doi.org/10.1103/PhysRevC.68.064307

    Article  ADS  Google Scholar 

  69. B. A. Li, C. M. Ko, and W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998). https://doi.org/10.1142/s0218301398000087

    Article  ADS  Google Scholar 

  70. B. A. Li and W. U. Schröder, Isospin Physics in Heavy-Ion Collisions at Intermediate Energies (Nova Sci., New York, 2001).

    Google Scholar 

  71. P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592 (2002). https://doi.org/10.1126/science.1078070

    Article  ADS  Google Scholar 

  72. J. M. Lattimer and M. Prakash, Science 304, 536 (2004). https://doi.org/10.1126/science.1090720

    Article  ADS  Google Scholar 

  73. V. Baran, M. Colonna, V. Greco, and M. Di Toro, Phys. Rep. 410, 335 (2005). https://doi.org/10.1016/j.physrep.2004.12.004

    Article  ADS  Google Scholar 

  74. A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis, Phys. Rep. 411, 325 (2005). https://doi.org/10.1016/j.physrep.2005.02.004

    Article  ADS  Google Scholar 

  75. B. D. Day and R. B. Wiringa, Phys. Rev. C 32, 1057 (1985). https://doi.org/10.1103/PhysRevC.32.1057

    Article  ADS  Google Scholar 

  76. C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Phys. Rev. Lett. 70, 379 (1993). https://doi.org/10.1103/PhysRevLett.70.379

    Article  ADS  Google Scholar 

  77. R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C 29, 1207 (1984). https://doi.org/10.1103/PhysRevC.29.1207

    Article  ADS  Google Scholar 

  78. J. L. Friar, G. L. Payne, V. G. J. Stoks, and J. J. de Swart, Phys. Lett. B 311, 4 (1993). https://doi.org/10.1016/0370-2693(93)90523-K

    Article  ADS  Google Scholar 

  79. L. Engvik, M. Hjorth-Jensen, R. Machleidt, H. Müther, and A. Polls, Nucl. Phys. A 627, 85 (1997). https://doi.org/10.1016/S0375-9474(97)00496-X

    Article  ADS  Google Scholar 

  80. B. S. Pudliner, V. R. Pandharipande, J. Carlson, and R. B. Wiringa, Phys. Rev. Lett. 74, 4396 (1995). https://doi.org/10.1103/PhysRevLett.74.4396

    Article  ADS  Google Scholar 

  81. K. Oyamatsu and K. Lida, Nucl. Phys. A 718, 363 (2003). https://doi.org/10.1016/S0375-9474(03)00740-1

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I would like to thank Prof. Dr. Kaan Manisa for helpful discussion and many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Bircan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bircan, H. Density Dependence of Nuclear Matter Symmetry Energy: VMC Calculations. Phys. Atom. Nuclei 83, 351–367 (2020). https://doi.org/10.1134/S1063778820020064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820020064

Navigation