Skip to main content
Log in

Free and Substrate-Immobilised Lipases from Fusarium verticillioides P24 as a Biocatalyst for Hydrolysis and Transesterification Reactions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fungal enzymes are widely used in technological processes and have some interesting features to be applied in a variety of biosynthetic courses. Here, free and substrate-immobilised lipases from Fusarium verticillioides P24 were obtained by solid-state fermentation using wheat bran as substrate and fungal carrier. Based on their hydrolytic and transesterification activities, the lipases were characterised as pH-dependent in both reactions, with higher substrate conversion in an alkaline environment. Thermally, the lipases performed well from 30 to 45 °C, being more stable in mild conditions. Organic solvents significantly influenced the lipase selectivity using different vegetable oils as fatty acid source. Omega(ω)-3 production in n-hexane achieved 45% using canola oil, against ≈ 18% in cyclohexane. However, ω-6 production was preferably produced for both solvents using linseed oil with significant alterations in the yield (≈ 79% and 49% for n-hexane and cyclohexane, respectively). Moreover, the greatest enzyme selectivity for ω-6 led us to suppose a lipase preference for the Sn1 position of the triacylglycerol. Lastly, a transesterification reaction was performed, achieving 90% of ester conversion in 72 h. This study reports the characterisation and use of free and substrate-immobilised lipases from Fusarium verticillioides P24 as an economic and efficient method for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hesham, A., & E. E. (2007). Filamentous fungal cultures-process characteristics, products, and applications. In Bioprocessing for Value-Added Products from Renewable Resources. Elsevier B.V. https://doi.org/10.1016/B978-0-444-52114-9.50010-4.

  2. Pérez, D., Martín, S., Fernández-Lorente, G., Filice, M., Guisán, J. M., Ventosa, A., et al. (2011). A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PloS one, 6(8), e23325. https://doi.org/10.1371/journal.pone.0023325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hung, T.-C., Giridhar, R., Chiou, S.-H., & Wu, W.-T. (2003). Binary immobilization of Candida rugosa lipase on chitosan. Journal of Molecular Catalysis B: Enzymatic, 26(1–2), 69–78. https://doi.org/10.1016/S1381-1177(03)00167-X.

    Article  CAS  Google Scholar 

  4. da Silva, C. C. F., Contesini, F. J., & Carvalho, P. d. O. (2009). Enantioselective behavior of lipases from Aspergillus niger immobilized in different supports. Journal of Industrial Microbiology and Biotechnology, 36(7), 949–954. https://doi.org/10.1007/s10295-009-0573-4.

    Article  CAS  PubMed  Google Scholar 

  5. Krishna, S. H., Prapulla, S. G., & Karanth, N. G. (2000). Enzymatic synthesis of isoamyl butyrate using immobilized Rhizomucor miehei lipase in non-aqueous media. Journal of Industrial Microbiology and Biotechnology, 25(3), 147–154.

    Article  CAS  Google Scholar 

  6. Lima, L. N., Oliveira, G. C., Rojas, M. J., Castro, H. F., & Tardioli, P. W. (2015). Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. Journal of industrial microbiology & biotechnology, 42(4), 523–535. https://doi.org/10.1007/s10295-015-1586-9.

    Article  CAS  Google Scholar 

  7. Fernandez-Lafuente, R., Armisén, P., Sabuquillo, P., Fernández-Lorente, G., & Guisán, J. M. (1998). Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and physics of lipids, 93(1–2), 185–97. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9720258

  8. Ben Akacha, N., & Gargouri, M. (2015). Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food and Bioproducts Processing, 94(May 2014), 675–706. https://doi.org/10.1016/j.fbp.2014.09.011.

    Article  CAS  Google Scholar 

  9. Lokha, Y., Arana-Peña, S., Rios, N. S., Mendez-Sanchez, C., Gonçalves, L. R. B., Lopez-Gallego, F., & Fernandez-Lafuente, R. (2020). Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions. Enzyme and Microbial Technology, 133, 109461. https://doi.org/10.1016/j.enzmictec.2019.109461.

    Article  CAS  PubMed  Google Scholar 

  10. de Oliveira, B. H., Coradi, G. V., de Oliva-Neto, P., & do Nascimento, V. M. G. (2020). Biocatalytic benefits of immobilized Fusarium sp. (GFC) lipase from solid state fermentation on free lipase from submerged fermentation. Industrial Crops and Products, 147(February), 112235. https://doi.org/10.1016/j.indcrop.2020.112235.

    Article  CAS  Google Scholar 

  11. de Oliveira Rodrigues, P., Gurgel, L. V. A., Pasquini, D., Badotti, F., Góes-Neto, A., & Baffi, M. A. (2020). Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy, 145, 2683–2693. https://doi.org/10.1016/j.renene.2019.08.041.

    Article  CAS  Google Scholar 

  12. Singh, R. S., Chauhan, K., Kaur, K., & Pandey, A. (2020). Statistical optimization of solid-state fermentation for the production of fungal inulinase from apple pomace. Bioresource Technology Reports, 9(November 2019), 100364. https://doi.org/10.1016/j.biteb.2019.100364.

    Article  Google Scholar 

  13. Wang, L., & Yang, S. T. (2007). Solid state fermentation and its applications. In Bioprocessing for Value-Added Products from Renewable Resources. Elsevier B.V. https://doi.org/10.1016/B978-044452114-9/50019-0.

  14. Muller Dos Santos, M., Souza Da Rosa, A., Dal’Boit, S., Mitchell, D. A., & Krieger, N. (2004). Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes? Bioresource Technology, 93(3), 261–268. https://doi.org/10.1016/j.biortech.2003.11.007.

    Article  CAS  PubMed  Google Scholar 

  15. Fernandes, M. L. M., Saad, E. B., Meira, J. A., Ramos, L. P., Mitchell, D. A., & Krieger, N. (2007). Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. Journal of Molecular Catalysis B: Enzymatic, 44(1), 8–13. https://doi.org/10.1016/j.molcatb.2006.08.004.

    Article  CAS  Google Scholar 

  16. Shinkawa, S., & Mitsuzawa, S. (2020). Feasibility study of on-site solid-state enzyme production by Aspergillus oryzae. Biotechnology for Biofuels, 3(1), 1–15. https://doi.org/10.1186/s13068-020-1669-3.

    Article  CAS  Google Scholar 

  17. Perez, C. L., Casciatori, F. P., & Thoméo, J. C. (2019). Strategies for scaling-up packed-bed bioreactors for solid-state fermentation: the case of cellulolytic enzymes production by a thermophilic fungus. Chemical Engineering Journal, 361(December 2018), 1142–1151. https://doi.org/10.1016/j.cej.2018.12.169.

    Article  CAS  Google Scholar 

  18. Rodrigues, I. d. S. V., Barreto, J. T., Moutinho, B. L., Oliveira, M. M. G., da Silva, R. S., Fernandes, M. F., & Fernandes, R. P. M. (2020). Production of xylanases by Bacillus sp. TC-DT13 in solid state fermentation using bran wheat. Preparative Biochemistry and Biotechnology, 50(1), 91–97. https://doi.org/10.1080/10826068.2019.1663536.

    Article  CAS  PubMed  Google Scholar 

  19. Brotas, M. S. C., Carvalho, G. A., & Pereira, P. A. P. (2020). Determination, through derivatization and GC-MS analysis, of omega-3 and omega-6 fatty acids in fish oil capsules sold in Salvador, Bahia. Journal of Brazilian Chemical Society, 31(3), 447–455.

    CAS  Google Scholar 

  20. Adarme-vega, T. C., Lim, D. K. Y., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11(96), 1–10.

    Google Scholar 

  21. Simopoulos, A. P. (2016). An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8(3), 1–17. https://doi.org/10.3390/nu8030128.

    Article  CAS  Google Scholar 

  22. Moreno-Perez, S., Turati, D. F. M., Borges, J. P., Luna, P., Señorans, F. J., Guisan, J. M., & Fernandez-Lorente, G. (2017). Critical role of different immobilized biocatalysts of a given lipase in the selective ethanolysis of sardine oil. Journal of Agricultural and Food Chemistry, 65(1), 117–122. https://doi.org/10.1021/acs.jafc.6b05243.

    Article  CAS  PubMed  Google Scholar 

  23. Moreno-Pérez, S., Guisan, J. M., & Fernandez-Lorente, G. (2014). Selective ethanolysis of fish oil catalyzed by immobilized lipases. JAOCS, Journal of the American Oil Chemists’ Society, 91(1), 63–69. https://doi.org/10.1007/s11746-013-2348-3.

    Article  CAS  Google Scholar 

  24. Moazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of Cleaner Production, 216, 117–128. https://doi.org/10.1016/j.jclepro.2019.01.181.

    Article  CAS  Google Scholar 

  25. Hama, S., Tamalampudi, S., Fukumizu, T., Miura, K., Yamaji, H., Kondo, A., & Fukuda, H. (2006). Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. Journal of bioscience and bioengineering, 101(4), 328–333. https://doi.org/10.1263/jbb.101.328.

    Article  CAS  PubMed  Google Scholar 

  26. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  27. Winkler, U. K., & Stuckmann, M. (1979). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138(3), 663–670. https://doi.org/10.1128/jb.138.3.663-670.1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fuciños, P., Abadín, C. M., Sanromán, A., Longo, M. A., Pastrana, L., & Rúa, M. L. (2005). Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. Journal of Biotechnology, 117(3), 233–241. https://doi.org/10.1016/j.jbiotec.2005.01.019.

    Article  CAS  PubMed  Google Scholar 

  29. Soares, C. M. F., De Castro, H. F., De Moraes, F. F., & Zanin, G. M. (1999). Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 7779, 745–757. https://doi.org/10.1385/abab:79:1-3:745, 1-3

  30. Urioste, D., Castro, M., Biaggio, F., & Castro, H. (2008). Síntese de padroes cromatográficos e estabelecimento de método para dosagem da composiçao de ésteres de ácidos graxos presentes no biodiesel a partir do óleo de babaçu. Química Nova, 31(2), 407–412.

    Article  CAS  Google Scholar 

  31. Ichihara, K., & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research, 51(3), 635–640. https://doi.org/10.1194/jlr.D001065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fernández-Lorente, G., Betancor, L., Carrascosa, A. V., & Guisán, J. M. (2011). Release of omega-3 fatty acids by the hydrolysis of fish oil catalyzed by lipases immobilized on hydrophobic supports. Journal of the American Oil Chemists’ Society, 88(8), 1173–1178. https://doi.org/10.1007/s11746-011-1776-1.

    Article  CAS  Google Scholar 

  33. Lima, L. G. R., Gonçalves, M. M. M., Couri, S., Melo, V. F., Sant’Ana, G. C. F., & Costa, A. C. A. d. (2019). Lipase production by Aspergillus niger C by submerged fermentation. Brazilian Archives of Biology and Technology, 62, 1–14. https://doi.org/10.1590/1678-4324-2019180113.

    Article  CAS  Google Scholar 

  34. Melani, N. B., Tambourgi, E. B., & Silveira, E. (2020). Lipases: from production to applications. Separation and Purification Reviews, 49(2), 143–158. https://doi.org/10.1080/15422119.2018.1564328.

    Article  CAS  Google Scholar 

  35. Solarte, C., Yara-Varón, E., Eras, J., Torres, M., Balcells, M., & Canela-Garayoa, R. (2014). Lipase activity and enantioselectivity of whole cells from a wild-type Aspergillius flavus strain. Journal of Molecular Catalysis B: Enzymatic, 100, 78–83. https://doi.org/10.1016/j.molcatb.2013.12.005.

    Article  CAS  Google Scholar 

  36. Volpato, G., Filice, M., Ayub, M. A. Z., Guisan, J. M., & Palomo, J. M. (2010). Single-step purification of different lipases from Staphylococcus warneri. Journal of chromatography. A, 1217(4), 473–478. https://doi.org/10.1016/j.chroma.2009.11.055.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Q., Hou, Y., Ding, Y., & Yan, P. (2012). Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70. Molecular biology reports, 39(9), 9233–9238. https://doi.org/10.1007/s11033-012-1796-4.

    Article  CAS  PubMed  Google Scholar 

  38. Ilesanmi, O. I., Adekunle, A. E., Omolaiye, J. A., Olorode, E. M., & Ogunkanmi, A. L. (2020). Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Scientific African, 8, e00279. https://doi.org/10.1016/j.sciaf.2020.e00279.

    Article  Google Scholar 

  39. Facchini, F. D. A., Pereira, M. G., Vici, A. C., Filice, M., Pessela, B. C., Guisan, J. M., et al. (2018). Immobilization effects on the catalytic properties of two Fusarium verticillioides lipases: stability, hydrolysis, transesterification and enantioselectivity improvement. Catalysts, 8(2). https://doi.org/10.3390/catal8020084.

  40. Salameh, M. a., & Wiegel, J. (2007). Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Applied and environmental microbiology, 73(23), 7725–7731. https://doi.org/10.1128/AEM.01509-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ulker, S., & Karaoğlu, S. A. (2012). Purification and characterization of an extracellular lipase from Mucor hiemalis f. corticola isolated from soil. Journal of bioscience and bioengineering, 114(4), 385–390. https://doi.org/10.1016/j.jbiosc.2012.04.023.

    Article  CAS  PubMed  Google Scholar 

  42. Galvis, M., Barbosa, O., Ruiz, M., Cruz, J., Ortiz, C., Torres, R., & Fernandez-Lafuente, R. (2012). Chemical amination of lipase B from Candida antarctica is an efficient solution for the preparation of crosslinked enzyme aggregates. Process Biochemistry, 47(12), 2373–2378. https://doi.org/10.1016/j.procbio.2012.09.018.

    Article  CAS  Google Scholar 

  43. Camargo-De-Morais, M. M., Maia, M. M. D., Borba, F. F. S., Melo, K. G., Santos, C. M. S. O., Reis, E. R. A., et al. (2003). Oil/mineral-salts medium designed for easy recovery of extracellular lipase from Fusarium oxysporum AM3. World Journal of Microbiology and Biotechnology, 19(1), 17–20. https://doi.org/10.1023/A:1022543125420.

    Article  CAS  Google Scholar 

  44. Maia, M. D. M. D., Camargo De Morais, M. M., De Morais, M. A., Melo, E. H. M., & De Lima Filho, J. L. (1999). Production of extracellular lipase by the phytopathogenic fungus Fusarium solani Fs1. Revista de Microbiologia, 30(4), 304–309. https://doi.org/10.1590/S0001-37141999000400003

  45. Nguyen, L. N., Dao, T. T., Živković, T., Fehrholz, M., Schäfer, W., & Salomon, S. (2010). Enzymatic properties and expression patterns of five extracellular lipases of Fusarium graminearum in vitro. Enzyme and Microbial Technology, 46(6), 479–486. https://doi.org/10.1016/j.enzmictec.2010.02.005.

    Article  CAS  PubMed  Google Scholar 

  46. Niyonzima, F. N., & More, S. (2014). Biochemical properties of the alkaline lipase of Bacillus flexus XJU-1 and its detergent compatibility. Biologia (Poland), 69(9), 1108–1117. https://doi.org/10.2478/s11756-014-0429-x.

    Article  CAS  Google Scholar 

  47. Bhosale, H., Shaheen, U., & Kadam, T. (2016). Characterization of a hyperthermostable alkaline lipase from Bacillus sonorensis 4R. Enzyme Research, 1, 1–11. https://doi.org/10.1155/2016/4170684.

    Article  CAS  Google Scholar 

  48. Wang, H., Zhong, S., Ma, H., Zhang, J., & Qi, W. (2012). Screening and characterization of a novel alkaline lipase from. Brazilian Journal of Microbiology, 1, 148–156.

    Article  Google Scholar 

  49. Reis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Lipases at interfaces: a review. Advances in Colloid and Interface Science, 147–148(C), 237–250. https://doi.org/10.1016/j.cis.2008.06.001.

    Article  CAS  PubMed  Google Scholar 

  50. Korma, S. A., Zou, X., Ali, A. H., Abed, S. M., Jin, Q., & Wang, X. (2018). Preparation of structured lipids enriched with medium- and long-chain triacylglycerols by enzymatic interesterification for infant formula. Food and Bioproducts Processing, 107, 121–130. https://doi.org/10.1016/j.fbp.2017.11.006.

    Article  CAS  Google Scholar 

  51. Porto, B. L. S., Faria, I. D. L., de Oliveira Mendes, T., & de Oliveira, M. A. L. (2015). Fast screening method for the analysis of trans fatty acids in processed food by CZE-UV with direct detection. Food Control, 55, 230–235. https://doi.org/10.1016/j.foodcont.2015.02.027.

    Article  CAS  Google Scholar 

  52. Damodaran, S., Parkin, K. L., & Fennema, O. R. (2007). Fennema’s Food Chemistry (4th ed.).

  53. Kamal, Z., Yedavalli, P., Deshmukh, M. V., & Rao, N. M. (2013). Lipase in aqueous-polar organic solvents: activity, structure, and stability. Protein Science, 22(7), 904–915. https://doi.org/10.1002/pro.2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muralidhar, R. V., Chirumamilla, R. R., Marchant, R., Ramachandran, V. N., Ward, O. P., & Nigam, P. (2002). Understanding lipase stereoselectivity. World Journal of Microbiology and Biotechnology, 18(2), 81–97. https://doi.org/10.1023/A:1014417223956.

    Article  CAS  Google Scholar 

  55. Holčapek, M., Jandera, P., Zderadička, P., & Hrubá, L. (2003). Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Journal of Chromatography A, 1010(2), 195–215. https://doi.org/10.1016/S0021-9673(03)01030-6.

    Article  CAS  PubMed  Google Scholar 

  56. Neff, W. E., Mounts, T. L., & Rinsch, W. M. (1997). Oxidative stability as affected by triacylglycerol composition and structure of purified canola oil triacylglycerols from genetically modified normal and high stearic and lauric acid canola varieties. LWT - Food Science and Technology, 30(8), 793–799. https://doi.org/10.1006/fstl.1997.0274.

    Article  CAS  Google Scholar 

  57. Żur, J., Piński, A., Michalska, J., Hupert-Kocurek, K., Nowak, A., Wojcieszyńska, D., & Guzik, U. (2020). A whole-cell immobilization system on bacterial cellulose for the paracetamol-degrading Pseudomonas moorei KB4 strain. International Biodeterioration and Biodegradation, 149(February), 104919. https://doi.org/10.1016/j.ibiod.2020.104919.

    Article  CAS  Google Scholar 

  58. Yang, S. Y., Choi, T. R., Jung, H. R., Park, Y. L., Han, Y. H., Song, H. S., et al. (2019). Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol. Enzyme and Microbial Technology, 128(May), 72–78. https://doi.org/10.1016/j.enzmictec.2019.05.003.

    Article  CAS  PubMed  Google Scholar 

  59. Quilles Junior, J. C., Ferrarezi, A. L., Borges, J. P., Brito, R. R., Gomes, E., da Silva, R., … Boscolo, M. (2016). Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism. Bioprocess and Biosystems Engineering, 39(12), 1933–1943. https://doi.org/10.1007/s00449-016-1667-9

  60. Lee, N. K., Oh, S. W., Kwon, D. Y., & Yoon, S. H. (2015). Production of 1, 3-dioleoyl-2-palmitoyl glycerol as a human milk fat substitute using enzymatic interesterification of natural fats and oils. Food Science and Biotechnology, 24(2), 433–437. https://doi.org/10.1007/s10068-015-0057-4.

    Article  CAS  Google Scholar 

  61. Foresti, M. L., & Ferreira, M. L. (2007). Chitosan-immobilized lipases for the catalysis of fatty acid esterifications. Enzyme and Microbial Technology, 40(4), 769–777. https://doi.org/10.1016/j.enzmictec.2006.06.009.

    Article  CAS  Google Scholar 

  62. Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2012). The effects of water on biodiesel production and refining technologies: a review. Renewable and Sustainable Energy Reviews, 16(5), 3456–3470. https://doi.org/10.1016/j.rser.2012.03.004.

    Article  CAS  Google Scholar 

  63. Ferrarezi, A. L., Hideyuki Kobe Ohe, T., Borges, J. P., Brito, R. R., Siqueira, M. R., Vendramini, P. H., et al. (2014). Production and characterization of lipases and immobilization of whole cell of the thermophilic Thermomucor indicae seudaticae N31 for transesterification reaction. Journal of Molecular Catalysis B: Enzymatic, 107(2014), 106–113. https://doi.org/10.1016/j.molcatb.2014.05.012.

    Article  CAS  Google Scholar 

  64. Zhou, G. X., Chen, G. Y., & Yan, B. b. (2015). Two-step biocatalytic process using lipase and whole cell catalysts for biodiesel production from unrefined jatropha oil. Biotechnology Letters, 37(10), 1959–1963. https://doi.org/10.1007/s10529-015-1883-4.

    Article  CAS  PubMed  Google Scholar 

  65. Villeneuve, P., Muderhwa, J. M., Graille, J., & Haas, M. J. (2000). Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. Journal of Molecular Catalysis B: Enzymatic, 9(4–6), 113–148. https://doi.org/10.1016/S1381-1177(99)00107-1.

    Article  CAS  Google Scholar 

  66. Zhang, B., Weng, Y., Xu, H., & Mao, Z. (2012). Enzyme immobilization for biodiesel production. Applied microbiology and biotechnology, 93(1), 61–70. https://doi.org/10.1007/s00253-011-3672-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support from the São Paulo Research Foundation (FAPESP Grants 2010/03555-5 and 2008/58077-0) and the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto da Silva.

Ethics declarations

Competing of Interests

The authors declare that they have no competing interests.

Research Involving Human Participants and/or Animals

The current research has no involved human participants and/or animal models.

Informed Consent

All authors declare that the current paper has not been under review by other journal, besides approving its submission on Applied Biochemistry and Biotechnology.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, J.P., Quilles Junior, J.C., Ohe, T.H.K. et al. Free and Substrate-Immobilised Lipases from Fusarium verticillioides P24 as a Biocatalyst for Hydrolysis and Transesterification Reactions. Appl Biochem Biotechnol 193, 33–51 (2021). https://doi.org/10.1007/s12010-020-03411-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03411-w

Keywords

Navigation