Skip to main content
Log in

Enhanced Production of Astaxanthin without Decrease of DHA Content in Aurantiochytrium limacinum by Overexpressing Multifunctional Carotenoid Synthase Gene

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Aurantiochytrium limacinum produces both docosahexaenoic acid (DHA) and astaxanthin, respectively. Organisms that produce these industrially important materials more efficiently than microalgae are currently needed. In this study, we overexpressed a putative homolog of CarS, which is involved in synthesizing the astaxanthin precursor, β-carotene, in A. limacinum to increase carotenoid synthesis with the goal of obtaining strains that produce large amounts of both DHA and carotenoids. AlCarS transformants #1 and #18 produced significantly increased amounts of astaxanthin as assessed according to culture (up to 5.8-fold) and optical density (up to 9.3-fold). The improved astaxanthin production of these strains did not affect their DHA productivity. Additionally, their CarS expression levels were higher than those of the wild-type strain, suggesting that CarS overexpression enhanced β-carotene production, which in turn improved astaxanthin productivity. Although cell yields were slightly decreased, these features will be valuable in health food, medical care, and animal feed fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Raghukumar, S. (2008). Thraustochytrid marine protists: Production of PUFAs and other emerging technologies. Marine Biotechnology, 10, 631–640.

    Article  CAS  Google Scholar 

  2. Calder, P. C. (2006). N-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. American Journal of Clinical Nutrition, 83, 1505S–1519S.

    Article  CAS  Google Scholar 

  3. Mozaffarian, D., & Wu, J. H. Y. (2011). Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. Journal of the American College of Cardiology, 58, 2047–2067.

    Article  CAS  Google Scholar 

  4. Birch, E. E., Hoffman, D. R., Uauy, R., Birch, D. G., & Prestidge, C. (1998). Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatric Research, 44, 201–209.

    Article  CAS  Google Scholar 

  5. Innis, S. M. (2007). Dietary omega 3 fatty acids and the developing brain. The Journal of Nutrition, 137, 855–859.

    Article  CAS  Google Scholar 

  6. Jacobs, M. N., Covaci, A., Gheorghe, A., & Schepens, P. (2004). Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements. Journal of Agricultural and Food Chemistry, 52, 1780–1788.

    Article  CAS  Google Scholar 

  7. Hong, W.-K., Yu, A., Oh, B.-R., Park, J. M., Kim, C. H., Sohn, J.-H., Kondo, A., & Seo, J.-W. (2013). Large-scale production of microalgal lipids containing high levels of docosahexaenoic acid upon fermentation of Aurantiochytrium sp. KRS101. Food and Nutrition Sciences, 4, 1–5.

    Article  Google Scholar 

  8. Kralovec, J. A., Zhang, S., Zhang, W., & Barrow, C. J. (2012). A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chemistry, 131, 639–644.

    Article  CAS  Google Scholar 

  9. Yokoyama, R., & Honda, D. (2007). Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): Emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. Nov. Mycoscience, 48, 199–211.

    Article  CAS  Google Scholar 

  10. Holt, N. E., Zigmantas, D., Valkunas, L., Li, X. P., Niyogi, K. K., & Fleming, G. R. (2005). Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science, 307, 433–436.

    Article  CAS  Google Scholar 

  11. Krinsky, N. I. (1989). Antioxidant functions of carotenoids. Free Radical Biology and Medicine, 7, 617–635.

    Article  CAS  Google Scholar 

  12. Berman, J., Zorrilla-López, U., Farré, G., Zhu, C., Sandmann, G., Twyman, R. M., Capell, T., & Christou, P. (2015). Nutritionally important carotenoids as consumer products. Phytochemistry Reviews, 14, 727–743.

    Article  CAS  Google Scholar 

  13. Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B., & Wani, A. A. (2015). Chemistry, encapsulation, and health benefits of β-carotene - a review. Cogent Food & Agriculture, 1, 1018696.

    Article  Google Scholar 

  14. Guerin, M., Huntley, M. E., & Olaizola, M. (2003). Haematococcus astaxanthin: Applications for human health and nutrition. Trends in Biotechnology, 21, 210–216.

    Article  CAS  Google Scholar 

  15. Yamashita, E. (2015). Let astaxanthin be thy medicine. PharmaNutrition, 3, 115–122.

    Article  CAS  Google Scholar 

  16. Borowitzka, L. J., & Borowitzka, M. A. (1990). Commercial production of β-carotene by Dunaliella salina in open ponds. Bulletin of Marine Science, 47, 244–252.

    Google Scholar 

  17. Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12, 499–506.

    Article  CAS  Google Scholar 

  18. Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., & Chen, F. (2014). Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: Biology and industrial potential. Marine Drugs, 12, 3487–3515.

    Article  Google Scholar 

  19. Panis, G., & Carreon, J. R. (2016). Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research, 18, 175–190.

    Article  Google Scholar 

  20. Park, H., Kwak, M., Seo, J. W., Ju, J. H., Heo, S. Y., Park, S. M., & Hong, W. K. (2018). Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess and Biosystems Engineering, 41, 1355–1370.

    Article  CAS  Google Scholar 

  21. Watanabe, K., Arafiles, K. H. V., Higashi, R., Okamura, Y., Tajima, T., Matsumura, Y., Nakashimada, Y., Matsuyama, K., & Aki, T. (2018). Isolation of high carotenoid-producing Aurantiochytrium sp. mutants and improvement of astaxanthin productivity using metabolic information. Journal of Oleo Science, 67, 571–578.

    Article  CAS  Google Scholar 

  22. Weaver, C. A., Metz, J. G., Kuner, J. M., & Overton, F. H. Jr. (2006). Carotene synthase gene and uses therefor. Martek Biosciences Corporation. USA, U.S. Patent 7585659.

  23. Adachi, T., Sahara, T., Okuyama, H., & Morita, N. (2017). Glass bead-based genetic transformation: An efficient method for transformation of Thraustochytrid microorganisms. Journal of Oleo Science, 66, 791–795.

    Article  CAS  Google Scholar 

  24. Schroda, M., Blocker, D., & Beck, C. F. (2000). The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. The Plant Journal, 21, 121–131.

    Article  CAS  Google Scholar 

  25. Rasala, B. A., Lee, P. A., Shen, Z., Briggs, S. P., Mendez, M., & Mayfield, S. P. (2012). Robust expression and secretion of xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One, 7, e43349.

    Article  CAS  Google Scholar 

  26. Sakaguchi, K., Matsuda, T., Kobayashi, T., Ohara, J. I., Hamaguchi, R., Abe, E., Nagano, N., Hayashi, M., Ueda, M., Honda, D., Okita, Y., Sugimoto, S., Okino, N., & Ito, M. (2012). Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. Applied and Environmental Microbiology, 78, 3193–3202.

    Article  CAS  Google Scholar 

  27. Diao, J., Song, X., Zhang, X., Chen, L., & Zhang, W. (2018). Genetic engineering of Crypthecodinium cohnii to increase growth and lipid accumulation. Frontiers in Microbiology, 9, 492.

    Article  Google Scholar 

  28. Lin, Y., Xie, X., Yuan, B., Fu, J., Liu, L., Tian, H., Chen, T., & He, D. (2018). Optimization of enzymatic cell disruption for improving lipid extraction from Schizochytrium sp. through response surface methodology. Journal of Oleo Science, 67, 215–224.

    Article  CAS  Google Scholar 

  29. De Nobel, J. G., Dijkers, C., Hooijberg, E., & Klis, F. M. (1989). Increased cell wall porosity in Saccharomyces cerevisiae after treatment with dithiothreitol or EDTA. Journal of General Microbiology, 135, 2077–2084.

    Google Scholar 

  30. Thompson, J. R., Register, E., Curotto, J., Kurtz, M., & Kelly, R. (1998). An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast, 14, 565–571.

    Article  CAS  Google Scholar 

  31. Wu, S., & Letchworth, G. J. (2004). High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques, 36, 152–154.

    Article  CAS  Google Scholar 

  32. Gao, S., Tong, Y., Zhu, L., Ge, M., Jiang, Y., Chen, D., & Yang, S. (2017). Production of β-carotene by expressing a heterologous multifunctional carotene synthase in Yarrowia lipolytica. Biotechnology Letters, 39, 921–927.

    Article  CAS  Google Scholar 

  33. Misawa, N., Satomi, Y., Kondo, K., Yokoyama, A., Kajiwara, S., Saito, T., & Ohtani, T. (1995). Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. Journal of Bacteriology, 177, 6575–6584.

    Article  CAS  Google Scholar 

  34. Yu, X. J., Sun, J., Zheng, J. Y., Sun, Y. Q., & Wang, Z. (2016). Metabolomics analysis reveals 6-benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytrium sp. Journal of Chemical Technology and Biotechnology, 91, 1199–1207.

    Article  CAS  Google Scholar 

  35. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48, 1146–1151.

    Article  CAS  Google Scholar 

  36. Li, Y., Han, D., Hu, G., Sommerfeld, M., & Hu, Q. (2010). Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 107, 258–268.

    Article  CAS  Google Scholar 

  37. Tokunaga, S., Sanda, S., Uraguchi, Y., Nakagawa, S., & Sawayama, S. (2019). Overexpression of the DOF-type transcription factor enhances lipid synthesis in Chlorella vulgaris. Applied Biochemistry and Biotechnology, 189, 116–128.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Yuki Kubo: investigation, methodology, writing—original draft. Mai Shiroi: investigation, methodology. Tokuhiro Higashine: methodology. Yuki Mori: methodology. Daichi Morimoto: investigation, writing—original draft, review, and editing. Satoshi Nakagawa: methodology, supervision. Shigeki Sawayama: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Daichi Morimoto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 890 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubo, Y., Shiroi, M., Higashine, T. et al. Enhanced Production of Astaxanthin without Decrease of DHA Content in Aurantiochytrium limacinum by Overexpressing Multifunctional Carotenoid Synthase Gene. Appl Biochem Biotechnol 193, 52–64 (2021). https://doi.org/10.1007/s12010-020-03403-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03403-w

Keywords

Navigation