Skip to main content
Log in

Analysis of Minerals and Heavy Metals Using ICP-OES and FTIR Techniques in Two Red Seaweeds (Gymnogongrus griffithsiae and Asparagopsis taxiformis) from Tunisia

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, the mineral and heavy metals (arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), mercury (Hg), potassium (K), manganese (Mn), sodium (Na), phosphorus (P), and lead (Pb)) in two red Tunisian seaweeds Gymnogongrus griffithsiae (G. griffithsiae) and Asparagopsis taxiformis (A. taxiformis), were evaluated. Mineral and trace element analyses were achieved using inductively coupled plasma optical emission spectrometry (ICP-OES). Fourier transform infrared (FTIR) spectroscopy was used to predict the major functional groups that would be implicated in the seaweeds mineral uptake. Our results showed that the studied A. taxiformis species had much higher mineral and heavy metal concentrations than G. griffithsiae. Na (200.60 mg/kg) was the most abundant element followed by K (137.84 mg/kg) > P (35.93 mg/kg) for A. taxiformis species. However, only Na (165.23 mg/kg) and P (51.19 mg/kg) were detected in G. griffithsiae alga. As regards heavy and toxic metals, allowable concentrations have been found in both seaweeds. The concentration ranges for the most undesirable heavy metals were as follows: Pb (0.39–0.51 mg/kg), As (0.11–0.40 mg/kg), Cd (0.01–0.02 mg/kg), and Hg (0.00–0.02 mg/kg). According to FTIR analysis, the major functional groups present in the studied seaweeds were carboxyl, hydroxyl, sulfate, and phosphate groups that are considered as excellent binding sites for metal retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cui Y, Liu X, Li S, Hao L, du J, Gao DH, Kang Q, Lu J (2018) Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. Int J Biol Macromol 117:256–263. https://doi.org/10.1016/j.ijbiomac.2018.05.134

    Article  CAS  PubMed  Google Scholar 

  2. Peng Y, Xie E, Zheng K, Fredimoses M, Yang X, Zhou X, Wang Y, Yang B, Lin X, Liu J, Liu Y (2013) Nutritional and chemical composition and antiviral activity of cultivated seaweed sargassum naozhouense Tseng et Lu. Mar Drugs 11:20–32. https://doi.org/10.3390/md11010020

    Article  CAS  Google Scholar 

  3. Ganesan AR, Tiwari U, Rajauria G (2019) Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci Hum Wellness 8:252–263. https://doi.org/10.1016/j.fshw.2019.08.001

    Article  Google Scholar 

  4. Ródenas de la Rocha S, Sánchez-Muniz FJ, Gómez-Juaristi M, Marín MTL (2009) Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method. J Food Compos Anal 22:330–336. https://doi.org/10.1016/j.jfca.2008.10.021

    Article  CAS  Google Scholar 

  5. Plaza Cazón J, Viera M, Donati E, Guibal E (2013) Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. J Environ Manag 129:423–434. https://doi.org/10.1016/j.jenvman.2013.07.011

    Article  CAS  Google Scholar 

  6. Yalçin S (2014) The mechanism of heavy metal biosorption on green marine macroalga Enteromorpha linza. Clean Soil Air Water 42:251–259. https://doi.org/10.1002/clen.201200500

    Article  CAS  Google Scholar 

  7. Kannan S (2014) FT-IR and EDS analysis of the seaweeds Sargassum wightii and Gracilaria corticata (red algae). Int J Curr Microbiol Appl Sci 3:341–351

    Google Scholar 

  8. Rahman MS, Sathasivam KV (2015) Heavy metal adsorption onto kappaphycus sp. from aqueous solutions: the use of error functions for validation of isotherm and kinetics models. Biomed Res Int:2015. https://doi.org/10.1155/2015/126298

  9. Ortiz-Calderon C, Silva HC, Vásquez DB (2017) Metal removal by seaweed biomass. Biomass Vol Estim Valorization Energy https://doi.org/10.5772/65682

  10. Banach JL, Hoek-van den Hil EF, van der Fels-Klerx HJ (2020) Food safety hazards in the European seaweed chain. Compr Rev Food Sci Food Saf 19:332–364. https://doi.org/10.1111/1541-4337.12523

    Article  CAS  PubMed  Google Scholar 

  11. Ben MK, Afli A (2005) Quelques traits de la biodiversité marine de Tunisie-Proposition d’aires de conservation et de gestion. North 32–55

  12. Ben Alaya H (1970) Flore marine de Tunisie. I. Liste préliminaire des algues du golfe de Tunis. Bull l’Institut Natl des Sci Technol la Mer Salammbô 1:205–212

  13. Ben Maiz N, Boudouresque CF, Ouahchi F (1987) Inventaire des algues et phanérogames marines benthiques de la Tunisie. G Bot Ital 121:259–304

    Article  Google Scholar 

  14. Ben Maiz N (1995) Etude nationale sur la diversité biologique de la flore marine et aquatique de Tunisie (Monographie). Projet MEAT/PNUE/GEF Ministère de l’Environnementet de l’Aménagement du territoire, Tunisie

  15. Ben Said R, Ksouri J (2000) L’algue rouge Gracilaria verrucosa (Hudson) Papenfuss, du lac de bizerte (tunisie) : teneur et qualite de l’agar-agar; In: Proceedings of the Frist Mediterranean Symposium on Marine Vegetation (AJACCIO, 3-4 October 2000). pp 87–91

  16. Boudouresque CF, Harmelin JG, Jeudy de Grissac A (2006) Annexe III. Index des espèces signalées à Zembra. In: Boudouresque CF, Harmelin JG (eds) Jeudy de Grissac A (ed) Le benthos marin de l’île de Zembra (ParcNational, Tunisie). UNEP/UICN/RACSPA, GIS Posidonie, Marseille, pp 185–196

    Google Scholar 

  17. Djellouli A, Verlaque M, Rais C (2000) Macroflore benthique de la lagune de Bizerte. In: Proceedings of the First Mediterranean Symposium on MarineVegetation, Ajaccio, France, 3-4 October 2000. pp 128–131

  18. Meñez EG, Mathieson AC (1981) The marine algae of Tunisia. Smithson Contrib Mar Sci 10:1–59

    Google Scholar 

  19. Shili A, Ben Maïz N, Boudouresque CF, Verlaque M (2010) Données sur la prolifération de la rhodobionte Asparagopsis taxiformis (Delile) trevisan de saintleon sur les cotes nord de Tunisie. In: Proceedings of the 4th Mediterranean Symposium on Marine Vegetation (Yasmine-Hammamet, 2-4 December 2010), pp 223–224

    Google Scholar 

  20. Zerzeri A, Djellouli AS, Mezgui Y, Ben Hassine OK (2010) Contribution à la caractérisation de la macroflore benthique des régions de Bizerte, Cap Zebib et Raf-Raf (Tunisie, Méditerranée). In: Rapport P.V. Réunion de la. Commission International pour l’Exploration Scientifique de Méditerranée. p 706

  21. Sghaier YR, Zakhama-Sraieb R, Mouelhi S et al (2016) Review of alien marine macrophytes in Tunisia. Mediterr Mar Sci 17:109–123. https://doi.org/10.12681/mms.1366

    Article  Google Scholar 

  22. Andreakis N, Procaccini G, Kooistra WHCF (2004) Asparagopsis taxiformis and Asparagopsis armata (Bonnemaisoniales, Rhodophyta): genetic and morphological identification of Mediterranean populations. Eur J Phycol 39:273–283. https://doi.org/10.1080/0967026042000236436

    Article  CAS  Google Scholar 

  23. Díaz-tapia P, Bárbara I (2014) Seaweeds from sand-covered rocks of the Atlantic Iberian Peninsula. Part 2. Palmariales, Ceramiales (excluding Rhodomelaceae), Gelidiales, Gigartinales, Plocamiales, Rhodymeniales and Scytothamnales. Cryptogam Algol 35:157–199. https://doi.org/10.7872/crya.v35.iss2.2014.157

    Article  Google Scholar 

  24. Larrea-Marín MT, Pomares-Alfonso MS, Gómez-Juaristi M, Sánchez-Muniz FJ, de la Rocha SR (2010) Validation of an ICP-OES method for macro and trace element determination in Laminaria and Porphyra seaweeds from four different countries. J Food Compos Anal 23:814–820. https://doi.org/10.1016/j.jfca.2010.03.015

    Article  CAS  Google Scholar 

  25. Ghosh S, Prasanna L, Sowjanya VB et al (2013) Inductively coupled plasma –optical emission spectroscopy: a review. Asian J Pharm Anal 3:24–33

    Google Scholar 

  26. Mohamed MA, Jaafar J, Ismail AF, et al (2017) Fourier transform infrared (FTIR) spectroscopy. Elsevier B.V.

    Book  Google Scholar 

  27. Dutta A (2017) Fourier transform infrared spectroscopy. In: Spectroscopic methods for nanomaterials characterization. Elsevier Inc., pp 73–93

  28. Long H, Gu X, Zhu Z, Wang C, Xia X, Zhou N, Liu X, Zhao M (2020) Effects of bottom sediment on the accumulation of nutrients in the edible green seaweed Caulerpa lentillifera (sea grapes). J Appl Phycol 32:705–716. https://doi.org/10.1007/s10811-019-01949-9

    Article  CAS  Google Scholar 

  29. Thodhal Yoganandham S, Raguraman V, Muniswamy GK, Sathyamoorthy G, Rajan Renuka R, Chidambaram J, Rajendran T, Chandrasekaran K, Santha Ravindranath RR (2019) Mineral and trace metal concentrations in seaweeds by microwave-assisted digestion method followed by quadrupole inductively coupled plasma mass spectrometry. Biol Trace Elem Res 187:579–585. https://doi.org/10.1007/s12011-018-1397-8

    Article  CAS  PubMed  Google Scholar 

  30. Cabrita ARJ, Maia MRG, Oliveira HM, Sousa-Pinto I, Almeida AA, Pinto E, Fonseca AJM (2016) Tracing seaweeds as mineral sources for farm-animals. J Appl Phycol 28:3135–3150. https://doi.org/10.1007/s10811-016-0839-y

    Article  CAS  Google Scholar 

  31. Topcuoǧlu S, Güven KC, Balkis N, Kirbaşoǧlu Ç (2003) Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998-2000. Chemosphere 52:1683–1688. https://doi.org/10.1016/S0045-6535(03)00301-1

    Article  CAS  PubMed  Google Scholar 

  32. Circuncisão AR, Catarino MD, Cardoso SM, Silva AMS (2018) Minerals from macroalgae origin: health benefits and risks for consumers. Mar Drugs 16. https://doi.org/10.3390/md16110400

  33. Roleda MY, Marfaing H, Desnica N, Jónsdóttir R, Skjermo J, Rebours C, Nitschke U (2019) Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: health risk assessment and implication for food applications. Food Control 95:121–134. https://doi.org/10.1016/j.foodcont.2018.07.031

    Article  CAS  Google Scholar 

  34. Carro L, Barriada JL, Herrero R, Sastre de Vicente ME (2011) Adsorptive behaviour of mercury on algal biomass: competition with divalent cations and organic compounds. J Hazard Mater 192:284–291. https://doi.org/10.1016/j.jhazmat.2011.05.017

    Article  CAS  PubMed  Google Scholar 

  35. Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141. https://doi.org/10.1016/j.jcis.2004.01.036

    Article  CAS  PubMed  Google Scholar 

  36. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257. https://doi.org/10.1016/j.biortech.2005.12.006

    Article  CAS  PubMed  Google Scholar 

  37. OJEU-L364/5 (2006) Official journal of the European union L 364, 20 december 2006. In: Comm. Regul. No 1881/2006 19 December 2006, setting maximum levels Certain Contam. Foodst. http://extwprlegs1.fao.org/docs/ pdf/eur68134.pdf. Accessed 13 Mar 2020

  38. OJEU-L138/75 (2014) Official journal of the European union L 138, 13 may 2014. In: Comm. Regul. No 488/2014 12 May 2014 Amend. Regul. No 1881/2006 as regards maximum levels cadmium Foodst. https://www.fsai.ie/uploadedFiles/Reg488_2014.pdf. Accessed 13 Mar 2020

  39. OJEU-L161/9 (2015) Official journal of the European union L 161, 26 june 2015. In: Comm. Regul. 2015/1005 25 June 2015 Amend. Regul. No 1881/2006 as regards maximum levels lead Certain Foodst. https://www.fsai.ie/uploadedFiles/Reg2015_1005.pdf. Accessed 13 Mar 2020

  40. Rohani-Ghadikolaei K, Abdulalian E, Ng WK (2012) Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J Food Sci Technol 49:774–780. https://doi.org/10.1007/s13197-010-0220-0

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226. https://doi.org/10.1016/j.biotechadv.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  42. Anjali KP, Sangeetha BM, Devi G, Raghunathan R, Dutta S (2019) Bioprospecting of seaweeds (Ulva lactuca and Stoechospermum marginatum): the compound characterization and functional applications in medicine-a comparative study. J Photochem Photobiol B Biol 200:111622. https://doi.org/10.1016/j.jphotobiol.2019.111622

    Article  CAS  Google Scholar 

  43. Socrates G (2001) Infrared and Raman characteristic group frequencies tables and charts. John Wiley & Sons, West Sussex

    Google Scholar 

  44. Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23:1903–1909. https://doi.org/10.1016/j.foodhyd.2008.11.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Pr. Habib Langar, specialist in marine and algal taxonomy at the Faculty of Sciences of Tunis (FST, Tunisia) for his precious help in the identification of seaweed species, and Ing. Sabiha Bachwell Sellami, Principal Engineer at the Ministry of Agriculture, Water Resources and Fisheries (Tunisia) for her help in conducting ICP-OES analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Selmi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selmi, A., Khiari, R., Snoussi, A. et al. Analysis of Minerals and Heavy Metals Using ICP-OES and FTIR Techniques in Two Red Seaweeds (Gymnogongrus griffithsiae and Asparagopsis taxiformis) from Tunisia. Biol Trace Elem Res 199, 2342–2350 (2021). https://doi.org/10.1007/s12011-020-02335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02335-0

Keywords

Navigation