Skip to main content
Log in

Model of Cell Activation through TLR4 and TNFR2 Receptors

  • Biophysics and Medical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

A mathematical model is suggested for description of translation of the cell activation signals generated by interactions of TLR4 and TNFR2 receptors with ligands. The theoretical background to the construction of the model is offered and the main simulation results are presented. The model takes into account the possibility of self-activation of the cell induced by polymerization of receptors, intersection of signal cascades that may result in depletion of substrates of translating proteins and binding sites on the DNA. The probability of the activation event has a local maximum at the last layer of the reaction graph. The process of cell activation is described by use nonlinear system of singularly perturbed differential equations. All requirements on solution existence have been satisfied and approximate solution has been derived. The boundary conditions type is of importance. Suitably, the probability density of signal transmission from TNFR2 to the cell’s DNA has been specified on the membrane, and flow through the membrane has been set for the probability density of signal transmission from TLR4 to the cell’s DNA. These obstacles necessitate the use of a special algorithm for analyzing nonlinear differential systems with a small parameter for different boundary conditions. The probability densities are qualitatively different themselves, have distinctive structure, emphasizing different ways of cell activation. The density functions of the probability of cell activation make it possible to determine approximately the distribution of the effectiveness of activation inhibitors over the reaction graph layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Akira and K. Takeda, Nat. Rev. Immunol. 4, 499 (2004).

    Article  Google Scholar 

  2. P. Christmas, Nat. Educ. 3(9), 85 (2010). https://www.nature.com/scitable/content/structure-and-signaling-of-toll-like-receptors-14455959.

    Google Scholar 

  3. D. Elbert, H. Reinhardt, and M. K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994).

    Article  ADS  Google Scholar 

  4. B. Manavalan, S. Basith, and S. Choi, Front. Physiol. 2, 41 (2011). https://www.frontiersin.org/articles/10.3389/fphys.2011.00041/full.

    Article  Google Scholar 

  5. A. Chaturvedi, R. Martz, D. Dorward et al., Nat. Immunol. 12, 1119 (2011). doi https://doi.org/10.1038/ni.2116

    Article  Google Scholar 

  6. K. Takeda, T. Kaisho, and S. Akira, Annu. Rev. Immunol. 21, 335 (2003).

    Article  Google Scholar 

  7. T. Kawai and S. Akira, Nat. Immunol. 11, 373 (2010).

    Article  Google Scholar 

  8. S. N. Lester and K. Li, J. Mol. Biol. 426, 1246 (2014).

    Article  Google Scholar 

  9. X. Li, S. Jiang, and R. I. Tapping, Cytokine 49, 1 (2010).

    Article  Google Scholar 

  10. https://www.genome.jp/keggbin/show_pathway?map=hsa04620&show_description=show.

  11. Y. Bulut, E. Faure, L. Thomas, et al., J. Immunol. 167, 987 (2001).

    Article  Google Scholar 

  12. N. D. Titova, Immunopatol., Allergol., Infektol. 3, 32 (2009).

    Google Scholar 

  13. A. Oblak, J. Pohar, and R. Jerala, PLoS ONE 10, e0120583 (2015). https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120583.

    Article  Google Scholar 

  14. N. Etemadi, J. K. Holien, D. Chau, et al., FEBS J. 280, 5283 (2013). doi https://doi.org/10.1111/febs.12419

    Article  Google Scholar 

  15. D. Brenner, H. Blaser, T. W. Mak, et al., Nat. Rev. Immunol. 15, 362 (2015). doi https://doi.org/10.1038/nri3834

    Article  Google Scholar 

  16. D. Moquin and F. K. Chan, Trends Biochem. Sci. 35, 434 (2010). doi https://doi.org/10.1016/j.tibs.2010.03.001

    Article  Google Scholar 

  17. B. Schrofelbauer and A. Hoffmann, Immunol Rev. 244, 29 (2011). doi https://doi.org/10.1111/j.1600-065X.2011.01060.x

    Article  Google Scholar 

  18. Y. Mukai, T. Nakamura, M. Yoshikawa, et al., Sci. Signaling 3, 83 (2010). https://doi.org/10.1126/scisignal.2000954

    Article  Google Scholar 

  19. L. Ward-Kavanagh, W. W. Lin, S. John, et al., Immunity 44, 1005 (2016). https://doi.org/10.1016/j.immuni.2016.04.019

    Article  Google Scholar 

  20. P. Xie, J. Poovassery, L.L. Stunz, et al., J. Leukocyte Biol. 90, 1149 (2011). https://doi.org/10.1189/jlb.0111044

    Article  Google Scholar 

  21. S. A. Mahmud, L. S. Manlove, H. M. Schmitz, et al., Nat. Immunol. 15, 473 (2014). doi https://doi.org/10.1038/ni.2849

    Article  Google Scholar 

  22. M. P. DeBerge, K. H. Ely, P. F. Wright, et al., J. Leukocyte Biol. 98, 423 (2015).

    Article  Google Scholar 

  23. R. Fischer, O. Maier, M. Siegemund, et al., PLoS One 6, e27621 (2011). doi https://doi.org/10.1371/journal.pone.0027621

    Article  ADS  Google Scholar 

  24. P. J. Naude, J. A. den Boer, P. G. Luiten, and U. L. Eisel, FEBS J. 278, 8889 (2011). doi https://doi.org/10.1111/j.1742-4658.2011.08017.x

    Article  Google Scholar 

  25. M. Fotin-Mleczek, F. Henkler, D. Samel, et al., J. Cell Sci. 115, 2757 (2002).

    Google Scholar 

  26. N. Orti-Casan, Y. Wu, P. Naude, et al., Front. Neurosci. 13, 49 (2019). doi https://doi.org/10.3389/fnins.2019.00049

    Article  Google Scholar 

  27. A. Abbasi, K. Forsberg, and F. Bischof, Front. Mol. Neurosci. 8, 21 (2015). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466442/.

    Article  Google Scholar 

  28. M. Fallahi-Sichani, M. A. Schaller, D. E. Kirschner, et al., PLoS Comput. Biol. 6, e1000778 (2010).

    Article  Google Scholar 

  29. E. A. Generalov, N. T. Levashova, A. E. Sidorova, P. M. Chumakov, and L. V. Yakovenko, Biophysics 62, 717 (2017).

    Article  Google Scholar 

  30. A. M. Hajjar, D. S. O’Mahony, A. Ozinsky, et al., J. Immunol. 166, 15 (2001).

    Article  Google Scholar 

  31. T. Nishiya and A. L. DeFranco, J. Biol. Chem. 279, 19008 (2004).

    Article  Google Scholar 

  32. V. A. Beloshapko, Math. Methods Appl. Sci. 41, 92645 (2018). doi https://doi.org/10.1002/mma.5235

    Article  MathSciNet  Google Scholar 

  33. V. A. Beloshapko, J. Phys.: Conf. Ser. 1334, 012015 (2019).

    Google Scholar 

  34. C. A. Hinojosa, R. A. Suresh Babu, M. M. Rahman, et al., Exp. Gerontol. 54, 58 (2014). https://doi.org/10.1016/j.exger.2014.01.007

    Article  Google Scholar 

  35. A. Dorronsoro, V. Lang, E. Jakobsson, et al., Cell Death Dis. 4, e972 (2013). https://www.nature.com/articles/cddis2013494.

    Article  Google Scholar 

  36. A. Abbasi, K. Forsberg, and F. Bischof, Front. Mol. Neurosci. 8, 21 (2015). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466442/

    Article  Google Scholar 

  37. C. A. Hinojosa, R. A. Suresh Babu, M. M. Rahman, et al., Exp. Gerontol. 54, 58 (2014). doi https://doi.org/10.1016/j.exger.2014.01.007

    Article  Google Scholar 

  38. M. Fallahi-Sichani, M. A. Schaller, D. E. Kirschner, et al., PLOS Comput. Biol. 6, e1000778 (2010). https://doi.org/10.1371/journal.pcbi.1000778

    Article  Google Scholar 

  39. B. Riviere, Y. Epshteyn, D. Swigon, and Y. Vodovotz, Math. Biosci. 217, 19 (2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.711.8094&rep=rep1&type=pdf.

    Article  MathSciNet  Google Scholar 

  40. B. Riviere, Y. Epshteyn, D. Swigon, and Y. Vodovotz, Math. Biosci. 217, 19 (2009). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.711.8094&rep=rep1&type=pdf.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-31-00402.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Beloshapko, E. A. Generalov or L. V. Yakovenko.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 6, pp. 85–91.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloshapko, V.A., Generalov, E.A. & Yakovenko, L.V. Model of Cell Activation through TLR4 and TNFR2 Receptors. Moscow Univ. Phys. 74, 662–668 (2019). https://doi.org/10.3103/S0027134919060079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919060079

Keywords

Navigation