Skip to main content
Log in

The Stability of Titanomagnetite Basalt of the Red Sea during Heating in Air and Argon

  • Physics of Earth, Atmosphere, and Hydrosphere
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

To optimize heating conditions during the Thellier procedure and to improve the reliability of paleofield determination, thermal stability experiments with titanomagnetite and titanomaghemite obtained by laboratory heating were conducted. The experiments were performed on P72/2 and P72/4 basalts of the rift zone of the Red Sea that contain titanomagnetite with a concentration of the magnetite component equal to (44.7 ± 3.9)% and (46 ± 5)%, respectively. It has been shown that the single-phase oxidation process prevails in annealing of titanomagnetite for 10 hours in a temperature range of 290–410°C in air. An increase in the annealing temperature up to 460–535°C means that single-phase oxidation is replaced by oxi-exsolution. The temperature range of thermal stability of the single-phase oxidized titanomagnetite expands with the degree of oxidation. In particular, at an oxidation state close to 0.9, titanomaghemite is stable up to temperatures of 410–460°C.

The use of the Thellier technique for studying the properties of the chemical remanent magnetization of single-phase oxidized titanomagnetite with an oxidation state above z ≥ 0.6 is limited to approximately 20% of its value. It is possible to stabilize the single-phase oxidized state of titanomagnetite at temperatures above 460°C and thereby to improve the quality of CRM research using the Thellier method by adjusting the value of the oxygen partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. N. Khramov, G. I. Goncharov, R. A. Komissarova, et al., Paleomagnetology (Nedra, Leningrad, 1982).

    Google Scholar 

  2. P. W. Readman and W. O’Reilly, J. Geomagn. Geoelectr. 24, 69 (1972).

    Article  ADS  Google Scholar 

  3. U. Bleil and N. Petersen, Nature 301, 384 (1983).

    Article  ADS  Google Scholar 

  4. U. Draeger, M. Prévot, T. Poidras, and J. Riisager, Geophys. J. Int. 166, 12 (2006).

    Article  ADS  Google Scholar 

  5. R. S. Coe, J. Geomagn. Geoelectr. 19, 157 (1967).

    Article  ADS  Google Scholar 

  6. V. I. Maksimochkin and A. N. Tselebrovskiy, Moscow Univ. Phys. Bull. 70, 566 (2015). https://doi.org/10.3103/S0027134915060132

    Article  ADS  Google Scholar 

  7. S. K. Gribov, A. V. Dolotov, and V. P. Shcherbakov, Izv., Phys. Solid Earth 53, 274 (2017).

    Article  ADS  Google Scholar 

  8. S. K. Gribov, V. P. Shcherbakov, and N. A. Aphinogenova, in Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism, Ed. by D. Nurgaliev, V. Shcherbakov, A. Kosterov, and S. Spassov (Springer, 2018), p. 173.

  9. P. A. Selkin and L. Tauxe, Philos. Trans. R. Soc. London, A 358, 1065 (2000).

    Article  ADS  Google Scholar 

  10. G. V. Zhidkov, V. P. Shcherbakov, A. V. Dolotov, M. A. Smirnov, A. A. Ovsyannikov, and P. Yu. Plechov, Izv., Phys. Solid Earth 53, 162 (2017).

    Article  ADS  Google Scholar 

  11. E. Herrero-Bervera and J.-P. Valet, Earth Planet. Sci. Lett. 287, 420 (2009).

    Article  ADS  Google Scholar 

  12. N. R. Khisina, Subsolidus Transformations of Solid Solutions of Rock-Forming Minerals (Nauka, Moscow, 1987).

    Google Scholar 

  13. A. Putnis and J. D. C. McConnell, Principles of Mineral Behavior (Blackwell, 1980).

  14. A. A. Shreider, Geomagnetic Research in the Indian Ocean (Nauka, Moscow, 2001).

    Google Scholar 

  15. Underwater Geological Exploration with Manned Submersibles, Ed. by A. S. Monin and A. P. Lisitsyn (Nauka, Moscow, 1985).

    Google Scholar 

  16. V. I. Maksimochkin, V. I. Trukhin, N. M. Garifullin, and N. A. Khasanov, Instrum. Exp. Tech. 46, 702 (2003).

    Article  Google Scholar 

  17. J. C. W. Richards, J. B. O’Donovan, Z. Hauptman, W. O’Reilly, and K. M. Creer, Phys. Earth Planet. Inter. 7, 437 (1973).

    Article  ADS  Google Scholar 

  18. R. Day, M. Fuller, and V. A. Schmidt, Phys. Earth Planet. Inter. 13, 260 (1977).

    Article  ADS  Google Scholar 

  19. S. K. Gribov, Candidate’s Dissertation in Mathematics and Physics (Institute of Physics of the Earth, Russ. Acad. Sci., Moscow, 2004).

    Google Scholar 

  20. T. Nishitani and M. Kono, J. Geophys. 50, 137 (1982).

    Google Scholar 

Download references

Acknowledgments

The authors thanks A.N. Nekrasov (Institute of Experimental Mineralogy of the Russian Academy of Sciences, Chernogolovka) for his help in performing the microsonde tests.

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 16-05-00144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Maksimochkin.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 6, pp. 113–120.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimochkin, V.I., Grachev, R.A. The Stability of Titanomagnetite Basalt of the Red Sea during Heating in Air and Argon. Moscow Univ. Phys. 74, 697–705 (2019). https://doi.org/10.3103/S0027134919060195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919060195

Keywords

Navigation